Chapter 13




Matrix Representation

Matrix Rep. - Same basics as introduced already.
Convenient method of working with vectors.

Superposition - - Complete set of vectors can be used to
express any other vector.

Complete set of N orthonormal vectors can form other complete sets of
N orthonormal vectors.

Can find set of vectors for Hermitian operator satisfying
Aluy=a|u).
Eigenvectors and eigenvalues

Matrix method=———p-Find superposition of basis states that are
eigenstates of particular operator. Get eigenvalues.
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Orthonormal basis set in N dimensional vector space

{|ej>} basis vectors

Any N dimensional vector can be written as

|X>=ZN:XJ|ej> with Xj=<ej|x>
i=1

To get this, project out

el)(e’| from |x)
X;|e')=|e’)(e!|x) piece of |x) thatis |e’),
then sum over all ‘ej>.
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Operator equation

|y)=Alx)

Z Y |e‘> = AZ X, |e’> Substituting the series in terms of bases vectors.
j=1 j=1

-2
j=1
Left mult. by <e‘|

=2 Ale’)x

=1

The N2 scalar products
<e‘ ‘A‘e"> N values of j for each y;; and N different y;

are completely determined by
A and the basis set {|ej>}.
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Writing
= <e‘ |A|ej> Matrix elements of A in the basis {|ej>}

gives for the linear transformation
yi=Zauxj j=1 2,---N

Know the a;; because we know A and {|ej>}

In terms of the vector representatives

(X, Ty, Q=7X+5y+4Z  vector
X, Y, / .
X=| . y=| " 5 vector representative,
must know basis
Xy  Yn 4

(Set of numbers, gives you vector
when basis is known.)

The set of N linear algebraic equations can be written as

y=AX
— +—— double underline means matrix

Copyright — Michael D. Fayer, 2018



A array of coefficients - matrix

dj; 8ttt Ay
A (a )_ An 8 -t 4 | The a; are the elements of the matrix A .
— - |J - N _
N NP A NIV
y=AX N
\ vector representatives in particular basis
Y1 dj;  8p o Ay [ X
Y2 _ dy Ay X,
L Ynd [@n: @y o e ] L XN

The product of matrix A and vector representative x
IS @ new vector representative y with components

N
Yi = Zaijxj
j=1
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Matrix Properties, Definitions, and Rules

Two matrices, A and B are equal

=
jab)

i = Dy

The unit matrix

- - The zero matrix
1 0 --- 0 _ _
< |01 - Of onesdown O 0 .- 0
= S| : | principal diagonal 0 00 .- 0
_O o ... 1_ = E
00 -+ 0
Gives identity transformation
N Ox =0
Yi =Z5ijxj =X =
j=1
Corresponds to
|v)=1]x)=|x)
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Matrix multiplication

Consider
| y> = A| X> |Z> = §| y> operator equations
2)=BA/x)

Using the same basis for both transformations

N
7= by, z=By B = matrix = (b,)
i=1 T

Example

ij=zbkiaij 2 3\ 7 5 _ 29 28
= 3 4)\5 6 41 39

Law of matrix multiplication
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Multiplication Associative
(AB)C=A(BC)

Multiplication NOT Commutative except in special cases.
Matrix addition and multiplication by complex number

aA+pB=C
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Reciprocal of Product
(AB)"=B"A"

For matrix defined as A=(a;)
Transpose
é=(a,—i) interchange rows and columns

Complex Conjugate

é* = (a.,) complex conjugate of each element

Hermitian Conjugate

A" = (a’;i) complex conjugate transpose

Inverse of a matrix A
inverse of A—— A™
ACT —— transpose of cofactor matrix (matrix of signed minors)

identity matrix

AAT=A"A=1

-1

A
Al =0 If|[Al =0 A issingular
T T Copyright — Michael D. Fayer, 2018
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(A’\é) = g é transpose of product is product of transposes in reverse order
| él =|A] determinant of transpose is determinant

= A B complex conjugate of product is product of complex conjugates

|A |=| Al determinant of complex conjugate is
complex conjugate of determinant

(AB)"=B"A" Hermitian conjugate of product is product of
Hermitian conjugates in reverse order

|A"|=| Al determinant of Hermitian conjugate is complex conjugate
of determinant
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Definitions
Symmetric

A=A
Hermitian

I>
Il
1>

Real

A=A

Imaginary

I
1>,

>
I

=A"  Unitary

1>

a; =8;9; Diagonal

Powers of a matrix
1 — A é

Copyright — Michael D. Fayer, 2018



Column vector representative — one column matrix

T
X = )fz
x. vector representatives in particular basis
Y
then y=AX
becomes
Y1 ;A [ X
Yo | | 8u 22 X3
L Ynd L8Nt @ne ann | L XN
row vector—— transpose of column vector
K =%, X, Xy )
y=AX — §=%A transpose
y=AX — ¥y =X"A

Hermitian conjugate
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Change of Basis
orthonormal basis

e}

then
(e'le’)=6;  (i,j=12N)

Superposition of {|ei>} s CaN fOrm N new vectors
linearly independent
a new basis {|e">}

ZN:u,k\ek i=1, 2, - N

k=1

complex numbers
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New Basis is Orthonormal

e} =

1

If the matrix
U= (uik)

\coefficients In superposition
<y N .
|e' >=Zuik|ek> i=1, 2, -+ N
meets the condition k=l
e U =U" U is unitary — Hermitian conjugate = inverse

Important result. The new basis {|e">} will be orthonormal

If U , the transformation matrix, Is unitary (see book

I1C

Ur=u'u=1 and Errata and Addenda, linear algebra book ).
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Unitary transformation
substitutes orthonormal basis {|e"}} for orthonormal basis {|e)} .

Vector |X>
X)=) X|e . S o
) z,: | > vector — line in space (may be high dimensionality
) abstract space)
! | . - -
X) = Z X;|€ > written in terms of two basis sets

|x> Same vector — different basis.

The unitary transformation U can be used to change a vector representative
of |x> In one orthonormal basis set to its vector representative in another

orthonormal basis set.

X — vector rep. in unprimed basis
X' — vector rep. in primed basis

x'=U x  change from unprimed to primed basis

x=U"x" change from primed to unprimed basis
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Example

Consider basis {X,¥,Z}
y A

Vector |s) - line in real space.

In terms of basis |s)=7%X+7§+12

Vector representative in basis {)? Y, 2}
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Change basis by rotating axis system 45° around Z .

Can find the new representative of |s> s'

s'=Us

U is rotation matrix

X y Z

cos® sin® 0
U=|-sin@ cosd 0
0 0 1

For 45° rotation around z

(J212 212 0)
J212 212 0

=
I

0 0 1
\ /
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Then

(V212 212 0)(7\ (742
s'=[—v2/2 2/2 of[7|=| ©
\ 0 0 1) 1 L 1 )
o
| o vector representative of |s) in basis {|e’>}
1

Same vector but in new basis.
Properties unchanged.

Example — length of vector (<s| s>)1/2

7= (57 5)? = (49 + 49 +1)Y2 = (99)2

T (878 )M? = (2x 49+ 0+1)2 = (99)
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Can go back and forth between representatives of a vector| x> by

change from unprimed change from primed
to primed basis to unprimed basis
x'=U X x=U"x'

components of | x) in different basis
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Consider the linear transformation
ly)=A|x)  operator equation
In the basis {|e>} can write
y=AX

or

=28,

Change to new orthonormal basis {|e')} using U

y=Uy=UAx=UAUX
or
yl=éfxl

with the matrix A’ given by
A'=UAU"

4 -1
BecauseU is unitary A = gég
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Extremely Important

1>

'=UAU"

Can change the matrix representing an operator in one orthonormal basis
Into the equivalent matrix in a different orthonormal basis.

Called

Similarity Transformation
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X

>
| >
[[ss]
[
1O
>
+
[[ss]
[
1O

y =
In basis {|e)}

Go into basis {|e >}

+B' =

IIO

!

y=

Relations unchanged by change of basis.

II>

X AB=C

1>,

Example AB=C

-1

|IC
Il
=

Can msertg g between AB because g+g=g

Therefore
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Isomorphism between operators in abstract vector space

and matrix representatives.

Because of isomorphism not necessary to distinguish
abstract vectors and operators
from their matrix representatives.

The matrices (for operators) and the representatives (for vectors)
can be used in place of the real things.
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Hermitian Operators and Matrices

Hermitian operator

(x(2ly)=TyTA)

Hermitian operator se——j- Hermitian Matrix

1>
Il
1>

+ - complex conjugate transpose - Hermitian conjugate
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Theorem (Proof: Powell and Craseman, P. 303 — 307, or linear algebra book)

For a Hermitian operator A in a linear vector space of N dimensions,

there exists an orthonormal basis,

U ue)-jut)

relative to which A is represented by a diagonal matrix

(¢, 0 0 .0
, 0 «, 0
A = )
= 0
\. o ... aN)

The vectors,

Ui>, and the corresponding real numbers, «;, are the
solutions of the Eigenvalue Equation
AlU)=alu)

and there are no others.
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Application of Theorem

Operator A represented by matrix A
In some basis {|e‘>} . The basis is any convenient basis.

In general, the matrix will not be diagonal.

There exists some new basis =——— eigenvectors

v}

. . ’ - . -
in which A represents operator and is diagonal === cigenvalues.

To get from {|ei>} to {|U'>}

sl UNItary transformation.

{}g{}

AU™ Similarity transformation takes matrix in arbitrary basis
o Into diagonal matrix with eigenvalues on the diagonal.
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Matrices and Q.M.

Previously represented state of system by vector | > In abstract vector space.
Dynamical variables represented by linear operators.

Operators produce linear transformations. | Y> = A| X>

Real dynamical variables (observables) are represented by Hermitian operators.
Observables are eigenvalues of Hermitian operators. A|S)=a/|S)

Solution of eigenvalue problem gives eigenvalues and eigenvectors.
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Matrix Representation

Hermitian operators replaced by Hermitian matrix representations.
A A
In proper basis, A is the diagonal Hermitian matrix and

the diagonal matrix elements are the eigenvalues (observables).

A suitable transformation U AU " takes A (arbitrary basis) into
A’ (diagonal - eigenvector basis)

|IC

=UAU"

1< IIJ>

takes arbitrary basis into eigenvectors.

Diagonalization of matrix gives eigenvalues and eigenvectors.

Matrix formulation is another way of dealing with operators
and solving eigenvalue problems.
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All rules about kets, operators, etc. still apply.

Example

Two Hermitian matrices A and B
can be simultaneously diagonalized by the same unitary

transformation if and only if they commute.

All ideas about matrices also true for infinite dimensional matrices.
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Example — Harmonic Oscillator

Have already solved — use occupation number representation kets and bras
(already diagonal).

1

H =§(Ez +x°) =%(§§+ +a'a)

a|n)=+n|n-1) a’ln)=vn+1 |n+1)

matrix elements of a |O> |1> |2> |3>

(0]ajo)y=0 <O(0 Ji 0 0 o0 -
(0]af1)=v1 Alo o v2 0o o

(0[2|2)=0 2[lo 0o 0 V3 o0

<1.§O>=O §=<?’ 0 0 0 0 <4

(1|a]1)=0

(1]al2)=+2

(1|a|3)=0

. o /
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cll
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cll
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o

o
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(1 0 0 0 -
0200
0 030
0 00 4
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ol
ol

@l
ol

— | N
Il

0100

0 0 20
0 0 0 3

0
0

J2 0 0
0

0
0
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Adding the matrices aa”and a*a and multiplying by % gives H

(1 0 0 O (1/2 0 0 O
10300 0 32 0 O
g=§ooso =0 0 52 0
0 00 7 0o 0 0 7/2

\ J N\ J

The matrix is diagonal with eigenvalues on diagonal. In normal units
the matrix would be multiplied by Z® .

This example shows idea, but not how to diagonalize matrix when you
don’t already know the eigenvectors.
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Diagonalization

Eigenvalue equation / eigenvalue
Au=auU » Au—au=0
matrix representing representative of
operator eigenvector

In terms of the components

ZN:(aij—aaij)uj=o (i=1,2---N)

1=1

This represents a system of equations

We know the a;.
(a, —a)u, +a,u, +a,U; +--- =0 We don't know
U, +(a, —a U, +a,U; +--- =0 « - the eigenvalues
u; - the vector representatives,
ay U +a,U, +(ag; —a Ju;+-- =0

one for each eigenvalue.
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Besides the trivial solution
u=u,=--U,=0

A solution only exists if the determinant of the coefficients of the u; vanishes.

(a11 _a) a, A3
a,, (a22 —a) a,, . . .| know a; don't know a's
dg dg, (a33 —a ) —0
Expanding the determinant gives Nt degree
equation for the unknown «'s (eigenvalues).
Then substituting one eigenvalue at a time into (all - )ul +8,U, + AU+ =0
system of equations, the u;
(eigenvector representatives) are found. ay U, + (azz —a )Uz +ay,U; +-- =0
N equations for u's gives only N - 1 conditions.
ay U +a,U, +(a; —a Ju;+-- =0

Use normalization.
U, U, + Uy U, +---+ Uy U, =1
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Example - Degenerate Two State Problem

Basis - time independentkets  |a) |B)  orthonormal.

H|a)=E;|a)+7|B)
a and g not eigenkets.

H|B)=E,|B)+7|a) Coupling .

These equations define H.

The matrix elements are And the Hamiltonian matrix is
(alHla) =,
(B|H|a)=7y @) |B)
(@|H[B)=7 (a|(E, ¥
(B|H|B)=E, i=<ﬂ v E,
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The corresponding system of equations is

(Eo—A)|a)+7|[B)=0  These only have a solution if
y|a)+(E,—4)|B)=0 the determinant of the coefficients vanish.

E -1 y E, vy Make into determinant.
’ =0 Tlakethe | o Subtract 4 from the diagonal
matrix y E,

elements.

Expanding

_____ y———— ‘ 2y  Dimer Splitting

(Eo—/?,)z—y2=0 \

E, Excited State

AP =2EA+E2-y*=0

Energy Eigenvalues

A =E,+y

Ground State
A =E -y E=0
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To obtain Eigenvectors
Use system of equations for each eigenvalue.

+)=a.]a)+b|3)
-)=a [a}+b |5)

Eigenvectors associated with A, and A..

[a..b,] and [a_,b_] are the vector representatives of |+) and |-}

inthe |@),| B) basis set.
We want to find these.
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First, for the
A, =E,+y
write system of equations.

eigenvalue

(Hll _ﬂ’+)a+ + H12b+ = O
H,a, +(H22 _/1+)b+ =0

H11=H ; H12=H

aa? H21=H H22=H

ap pa ).l

(EO_EO_}/)a++}/b+=O

ya,+(E,—E,—y)b, =0

The result is
—ya, +yb, =0
ya, _}/b+ =0

Matrix elements of i

The matrix elements are
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An equivalent way to get the equations is to use a matrix form.

S T

Substitute A, =E,+y

5 et o))
726

Multiplying the matrix by the column vector representative gives equations.

—ya, +yb, =0
ya,—yb, =0
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—ya, +}/b+ =0 . : :
The two equations are identical.
ya, —yb, =0

a. =b

+ +

Always get N — 1 conditions for the N unknown components.
Normalization condition gives necessary additional equation.

az+b’=1
Then
1
a, =b, =—
J2
and

|+>=i|a>+%|,8> Eigenvector in terms of the |@) |8)
2 basis set.
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For the eigenvalue
A-=E,—y

using the matrix form to write out the equations

=t Y

Substituting A_=E, -y

y rifa)_(0
y yN\b ) \0
ya_+yb_ =0
ya_+yb_ =0

These equations give a_=-b_

Using normalization a_=

-
1 1
Therefore |-)= —|a>—$|ﬂ>
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Can diagonalize by transformation

N\

diagonal nhot diagonal

Transformation matrix consists of representatives of eigenvectors
In original basis.

(a, a)_ 1N2 12
g'(m b)_(llﬁ —1/\/§J

e _(1/\5 112
12 12

J complex conjugate transpose
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Then

, (ﬂﬁ ]J\/E}(Eo yj(m uﬁ}

w2z 2\ y BNz -2

Factoring out 1/4/2 , one from each matrix.

L1 1)(E r)1 1
= 21 -1 )\ y E, N1 -1

after matrix multiplication

H’—l 1 1)\E,+y E,—y
= 21 -1 \E,+y -E,+y
more matrix multiplication

H' (E0+7/ 0

= 0 £, _;J diagonal with eigenvalues on diagonal
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