Chapter 10




Ground State of the He Atom — 1s State
First order perturbation theory

Neglecting translation of the entire atom.

h° v h _, Ze° Ze? e’
om ' 2m, % dmer, Aneg, 47580r12

0 0

AR

kinetic energies  attraction of electrons
to nucleus

H=-

1 - electron1
2 - electron 2
r, - distance of 1 to nucleus
r, - distance of 2 to nucleus

ry, - distance between two electrons

N\

electron — electron repulsion

Copyright — Michael D. Fayer, 2018



Substituting

g,h’
a, = 2
M e

n=a, Rl

I, =48, R12

o 1 07°

ox2 aldXZ'

Gives

Bohr radius

Distances in terms of Bohr radius

etc. spatial derivatives in units of Bohr radius
2 2 2
dre,a,R, 4rze,a R, 4rze,a R,
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In units of

e2 2
_Loe = ground state, 1s, energy of H atom
4re,a, 2 4re A,

I A Z 1 (Nothing changed. Substitutions
H= __(Vl +V2)_ R, B R, t R, simplify writing equations.)
Take

H’= _l(vf +V§)— Z_2 Zeroth order Hamiltonian.
2 R No electron — electron repulsion.
H'= 1 Perturbation piece of Hamiltonian.

Ry Electron — electron repulsion.
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Need solutions to zeroth order equation

ﬂowo — EOl/,O
Take v =y (Ly°(2)
and E°=E°(1)+E°(2)

HO has terms that depend only on 1 and 2. No cross terms. Can separate
zeroth order equation into

%Vfwo(1)+(E°(1)+éJV/°(l)=0

1

12 o 0 L 0 _
EVZI// (2)+(E (2)+?) (2)=0

2

These are equations for hydrogen like atoms with nuclear charge Z.
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For ground state (1)

1 Z 3/Ze—ZR1

‘/fO (1) = T
T Hydrogen 1s wavefunctions for electrons 1 and 2

°(2) 1 _ap —om but with nuclear charge Z.
l// 2 == TZ e_ 2
7T

The zeroth order solutions are

v’ (1,2) =y’ Dy’ (2) = Z7ge‘ZRle‘ZRZ product of 1s functions

@) (2) (H) nuclear charge Z
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Correction to energy due to electron — electron repulsion

E'=H/ =H,, expectation value of perturbation piece of H

= ”'//O*ﬂ"//o dr,dr,

2 6 —27ZR, .—2ZR
e Z g Tl
= dz,dz,

12
‘\ Electron — electron repulsion depends

on the distance between the two electrons.
dz, =sing, R12d¢1d6'1dR1

spherical polar coordinates
dr, =sind,R.d@,dd,dR,
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This is a tricky integral.
The following procedure can be used in this and analogous situations.

R, =+/R? +R2 —2RR, oSy yis the angle between the two vectors

R, and R,. 1 e-
O

et R. be the greater of R, and R,
R. be the lesser of R, and R,

Then R, =R 1+ X*—2Xcosy

X=—

R

>
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11 1 R
R, R 1+ x2-2xcos(y) R

Expand in terms of Legendre polynomials (complete set of functions in cos(y)).

1 1
TR zn:an P. (cos(y))

The a, can be found.

a,=X"
Therefore

1 1 0
R Zn:x P. (cos(y))
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Now express the

P.(cos(¥)) interms of the
0, &p ; 0,&0,

the absolute angles of the vectors
rather than the relative angle. 204 -

The position of the two electrons can be written in terms of the
Spherical Harmonics, the solutions to the ®(p) and ©(#) equations in the H atom.

P (cos@,)e™
Complete set of angular functions.

P (cos@,)e™

The result is

——ZZ( ~[m))! R P'““'(cosH)P| (cos@, )e™ ™)

(£+|m|)l R
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(£=|m[)! Rr?

1
R, zf:z:(£+|m|)! R

1 m

p" (cosé,) p" (cos 492)eim(¢’1‘¢’2)

Here is the trick.
The ground state hydrogen wavefunctions (or any s orbits) involve

Pl (cos@,)e™” 1s wavefunctions have spherical harmonics with
i {=0 m=0

P, (cosé,)e"™?

These are constants. Each is just the normalization constant.

A constant times any spherical harmonic except the one with, =0 m=0
which is a constant, integrated over the angles, gives zero.

Therefore, onlythe /=0 m =0 term in the sum survives when doing
integral of each term in the sum.

The entire sum reduces to for 1s state or any s states.

>

For other states, limited number of terms. Group theory. Full rotation group.
Integral of product of three functions. Direct product of representations of
function must contain totally symmetric rep. Formulas exist.
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Then

o ez Z6 e—ZZRle—ZZRZ
- 2
Are.a, 7w

dr,dr,

>

The integral over angles yields 1672,

2  wo 27R -27R
e e ‘e ?

4m%%00

E'=16Z°

R?dR, R2dR,

>

This can be written as
R, >R,

e

6.2 Rl Q0
gr-102°€ [e S [e?RIdR, + [e?*R, dR, [R7 dR,
4re,a, ¢ R % R

R, >R,
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Doing the integrals yields

e2

Adre a,

E=27
8

Putting back into normal units

, 5 1 e?
E'=|-——Z|E (H) E.(H)=-= =-13.6eV
4 2 4re A,

Therefore, _
negative number

E=E°+ E’=(222 —%Z)EIS(H)

e

Electron repulsion raises the energy.

For Helium,Z = 2, E = -74.8 eV
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atom exp. value (eV)

calc. value (eV)

% Error

He
Li*
Be*?
B*

c*

79.00

198.09

371.60

599.58

882.05

74.80

193.80

367.20

595.00

877.20

5.3

2.2

1.2

0.76

0.55

Experimental values are the sum of the first and second ionization energies.

lonization energy positive. Binding energy negative.
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The Variational Method
The Variational Theorem:

If ¢ 1is any function such that
I¢*¢d7 =1 (normalized)

and if the lowest eigenvalue of the operator H is E,,
then

(#|H|g)=[¢ Hgpdr2E,

The expectation value of H or any operator for any function is always
greater than or equal to the lowest eigenvalue.
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Proof

Consider
(#|H-E,|g)=(4|H|p)-(¢|Eo|4)
(#|H|p)-E,

The true eigenkets of H are
vi)
Hly)=E |w:)

Expand|g) in terms of the |y, )

orthonormal basis set
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|¢> = ZC‘ |V/i> Expansion in terms of the eigenkets of H.

Substitute the expansion

(#[H - Eol) = 26 (i |(H- ) e v )

The‘wj>are eigenkets of (H — E,). Therefore, the double sum collapses
Into a single sum.

=Zj:ﬁjcj <'//J‘(ﬂ_ Eo)"/’j>

Operating H on ‘y/j> returns E;.

($|H - Eo|¢)= Zj:EJCJ (Ej - EO)
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($|H-E|¢)= Zjlfjcj (Ej - EO)

c,c; 20 A number times its complex conjugate is positive or zero.
E, 2 E, An eigenvalue is greater than or equal to the lowest eigenvalue.
Then,
(E;—E,)20
and ZEjCj(Ej—EO)ZO
Therefore,
<¢ H- Eo ¢> 20

(p|H—E,|¢)=(s|H|p)-E, The lower the energy you
calculate, the closer it is to
Finally (¢ ﬂ|¢>=_"¢*ﬂ¢dz’2 E, —

the true energy.

The equality holds only if |#)=|w;) , the function is the lowest eigenfunction.
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Using the Variational Theorem

Pick a trial function

$(A. Ay, ) normalized
Calculate
J= I¢*ﬂ¢ dr

J is a function of the A’s.
Minimize J (energy) with respect to the A’s.

The minimized J - Approximation to E,.
The ¢ obtained from minimizing with respect to the A’s - approximation to |y,

Method can be applied to states above ground state with minor modifications.
Pick second function normalized and orthogonal to first function.

Minimize. If above first calculated energy, approximation to next highest energy.
If lower, it is the approximation to lowest state and initial energy is approx.

to the higher state energy.
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Example - He Atom

Trial function

3
¢ — Z e—Z’(R1+R2)
T
The zeroth order perturbation function but with Z = Z’ a variable.

Writing H as in perturbation treatment after substitutions

1 Z Z 1
H=——(Vi+V})-—-—+
2 Rl RZ R12

! !

Rewrite by adding and subtracting %+—
1 2
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Want to calculate

J=[4"Hgdr

using H from above.
The terms in red give
22’2 Els(H)

Zeroth order perturbation energy with
Z=>7'

Therefore,
J=22"E (H)—(Z—Z')[”¢—2drdr +_”¢—2de1' }+”¢—2drdr
1s Rl 1 2 R2 1 2 R12 1 2

—

These two integrals have the same value; only difference
Is subscript.
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For the two integrals in brackets, performing integration over angles gives

16 o© 00 . .
2| 1672 Z : J‘e_zz'Rl R, dR, J‘e—zz'Rz RZdR, | =22 after d_omg the integrals
T 9 ’ over distance.
eZ
In conventional units 2Z'
dre,a,

The last term in the expression for J (1/R12 term)
was evaluated in the perturbation problem

except z = 7'.

The result is (in conventional units)

2
5416
8 4drme,a,
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Putting the pieces together yields

2 2
e 5 e
+—=2Z'

J=22"E, (H)-(Z2-2")2Z'
drea, 8 4drze.q,

5
=|22"7+42'(2-2")->2"|E,,(H E (H)=—=
[ ( )=7 ] 1s(H) 1s(H) 2 dsa,

=| 272447227 |E (H)
4 1s
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To get the best value of E for the trial function ¢,
minimize J with respectto Z' .

o) =(-4z'+4z -E) E,.(H)=0
87’ 4

Solving for Z' yields

Z'=Z—i and Z=Z’+i
16 16

Using this value to eliminate Z in the expression for J

J =[—22'2 +4ZZ'—§Z'] E.(H)
yields 4

E=2Z"E, (H)

This is the approximate energy of the ground state of the He atom (Z = 2)
or two electron ions (Z > 2).
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atom exp. value (eV) calc. value (eV) % Error

He 79.00 77.46 1.9
Li* 198.09 196.46 0.82
Be** 371.60 369.86 0.47
B*? 599.58 597.66 0.32
c* 882.05 879.86 0.15

He perturbation theory value — 74.8 eV
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