
Chapter 17



Molecular Bonding
Molecular Schrödinger equation

r - nuclei
s - electrons
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Mj = mass of jth nucleus
m0 = mass of electron
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     Coulomb potential

electron-electron nuclear-nuclear electron-nuclear
repulsion repulsion  attraction

Copyright – Michael D. Fayer, 2018



Born-Oppenheimer Approximation

Electrons very light relative to nuclei they move very fast.

In the time it takes nuclei to change position a significant amount,
electrons have “traveled their full paths.”

Therefore,
Fix nuclei  - calculate electronic eigenfunctions and energy for
fixed nuclear positions.
Then move nuclei, and do it again.

The resulting curve is the energy as a function of internuclear separation.
If there is a minimum – bond formation.
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Born-Oppenheimer Approximation
Separation of total Schrödinger equation into an

electronic equation and a
nuclear equation

is obtained by expanding the total Schrödinger equation in powers of 
M – average nuclear mass, m0 - electron mass.

1)  Not exact

2)  Good approximation for many problems

3)  Many important effects are due to the “break down” of

the Born-Oppenheimer approximation.

 1/4
0/m M
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Born-Oppenheimer Approximate wavefunction

     , ,n n nx x      

electronic   nuclear
coordinates coordinates

electronic wavefunction
depends on electronic
quantum number, n

nuclear wavefunction
depends on electronic
quantum number, n and
nuclear (vibrational)
quantum number, 
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Electronic wavefunction

( , )n x  depends on fixed nuclear coordinates, .

Obtained by solving “electronic Schrödinger equation”
for fixed nuclear positions, .

No nuclear kinetic energy term.
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( )nU 
The energy

depends on the nuclear coordinates and the 
electronic quantum number.

The potential function
( , )V x 

complete potential function for
fixed nuclear coordinates.

Solve, change nuclear coordinates, solve again.
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Solve electronic wave equation

Nuclear Schrödinger equation becomes
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( )nU  - the electronic energy as a function of nuclear coordinates, ,
acts as the potential function.
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Before examining the hydrogen molecule ion and the hydrogen molecule
need to discuss matrix diagonalization with non-orthogonal basis set.

Two states                          orthonormal  and  A B

No interaction
0

AH A E A

0
BH B E B

States have same energy:

0A BE E E 

Degenerate

With interaction of magnitude 

0H A E A B 

0H B E B A 
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The matrix elements are
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Hamiltonian Matrix
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Matrix diagonalization -
form secular determinant
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Energy Eigenvalues
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Eigenvectors
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Matrix Formulation  - Orthonormal Basis Set
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This represents a system of equations
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only has solution if
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Basis Set Not Orthogonal but Normalized

Basis vectors not orthogonal 0iji j   
overlap

In Schrödinger representation * 0ij i j d   
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     system of equations

only has solution if

Equals 1 if i = j. 
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For a 2×2 matrix with non-orthogonal basis set

0AA AB

BA BB

H E H E
H E H E

   


   

 0,   recover standard 2×2 determinant for orthogonal basis.

E eigenvalues
 overlap integral
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Hydrogen Molecule Ion  - Ground State
A simple treatment

rBrA

e–

rAB
HA

+
HB

+

Born-Oppenheimer Approximation electronic Schrödinger equation

2 2 2
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Have multiplied through by 0
2

2m



2 - refers to
electron coordinates
electron kinetic energy
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Large nuclear separations

rAB  System looks like H atom and H+ ion

Energy
13.6 eVHE E Rhc    

Ground state wavefunctions

1 AsU 1 BsU

Either H atom at A in 1s state with H+ at B or 
H atom at B in 1s state with H+ at A 

1 AsU 1 BsUand                  degenerate
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Suggests simple treatment involving

as basis functions not orthogonal

1 AsU 1 BsUand

Form 2×2 Hamiltonian matrix and corresponding secular determinant.

0AA AB

BA BB

H E H E
H E H E

   


   
E eigenvalues
 overlap integral

*
1 1A As sAAH U H U d 

*
1 1B As sBAH U H U d 

AA BBH H

AB BAH H

*
1 1A Bs sU U d  
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Energies and Eigenfunctions
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S - symmetric (+ sign) A - antisymmetric (- sign)

(Not really symmetric and antisymmetric because only one electron.)
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Evaluation of Matrix Elements

Need HAA,  HAB,  and 

*
1 1A As sAAH U H U d 
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Part of H looks like Hydrogen atom Hamiltonian
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These terms operating on           can be set equal to               ,
EH - energy of 1s state of H atom.

1 AsU 1 AH sE U
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distance in units of the Bohr radius

(Coulomb Integral)
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(Again collecting terms equal
to the H atom Hamiltonian.)

J - Coulomb integral  - interaction of electron in 1s orbital around A with
a proton at B.

K  - Exchange integral – exchange (resonance) of electron between 
the two nuclei.

(Exchange integral)

(K is a negative number)

Copyright – Michael D. Fayer, 2018



These results yield
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(K is a negative number)
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Also consider

Classical - no exchange
Interaction of hydrogen 1s electron charge distribution at A
with a proton (point charge) at B.
Electron fixed on A.

The essential difference between
these is the sign of the exchange
integral, K.
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repulsive at all distances
anti-bonding M.O.

bonding M.O.

classical – no exchange

ABr
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De - dissociation energy

- equilibrium bond length
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0arD AB /
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ABr

Dissociation Energy Equilibrium Distance

De

This Calc.

Exp.

Variation
in Z'

1.77 eV  (36%) 1.32 Å  (25%)

2.78 eV  1.06 Å

2.25 eV  (19%) 1.06 Å  (0%)
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Hydrogen Molecule

In Born-Oppenheimer Approximation the electronic Schrödinger equation is
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ABr  , system goes to 2 hydrogen atoms

Use product wavefunction as basis functions

1 1

1 1

(1) (2)

(2) (1)

A B

A B

I s s

II s s

U U

U U









These are degenerate.

Electron 1 around A electron 2 around B.

Electron 2 around A electron 1 around B.
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Form Hamiltonian Matrix secular determinant

I I I II

II I II II

H H
H

H H
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Diagonalization yields
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S - symmetric orbital wavefunction
A - antisymmetric orbital wavefunction
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Evaluating
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Two kinetic energy terms 
and two electron-nuclear 
attraction terms comprise 
2 H atom Hamiltonians.

attraction to nuclei

electron-electron repulsion

nuclear-nuclear
repulsion
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K and  same as before.
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Ei - integral logarithm
math tables, approx., see book.
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J and K - same physical meaning as before.
J - Coulomb integral.  Attraction of electron around one nucleus for

the other nucleus.
K - Corresponding exchange integral.

J' - Coulomb integral.  Interaction of electron in 1s orbital on nucleus A
with electron in 1s orbital on nucleus B.

K' - Corresponding exchange or resonance integral.
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Putting the pieces together
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K' is negative.

The essential difference
between these is the sign
of the K' term.
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     Energy of

No exchange.
Classical interaction of spherical H atom charge distributions.
Charge distribution about H atoms A and B.
Electron 1 stays on A.
Electron 2 stays on B.
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ABrDissociation Energy Equilibrium DistanceDe

This Calc.

Exp.
Variation
in Z'

3.14 eV  (33%) 0.80 Å  (8%)

4.72 eV  0.74 Å
3.76 eV  (19%) 0.76 Å  (3%)

Vibrational Frequency  - fit to parabola, 3400 cm-1;  exp, 4318 cm-1

0arD AB /
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