
Chapter 6



The Harmonic Oscillator
Turning Points, A, -A

no frictionStretch spring, let go.
Mass, m, oscillates back and forth.

m

Hooke's Law F k x= − linear restoring force

spring constantforce

2

2

1/ 2

( ) ( )

( ) sin

F ma
mx kx
d x t k x t

dt m

kx t A t
m

=
= −

 = − 
 

 =  
 



amplitude      mass

Harmonic oscillator - oscillates sinusoidally.

A is how far the spring is stretched initially.

At the turning points, A, -A, motion stops.

All energy is potential energy.
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V

x
 

Potential is Parabolic

( )V xF
x

∂
∂

= −

21( )
2

V x k x dx k x= =∫

2 2 24k m mπ ν ω= =

oscillator
frequency, Hz

oscillator
frequency, rad/s

Energy of oscillator is
21 / 2E kA=

A can take on any value.  Energy is continuous, continuous range of values.

A - classical turning point.

A
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Quantum Harmonic Oscillator

Simplest model of molecular vibrations

x

E

x

E

Bond dissociation energy

Molecular potential energy
as a function of atomic separation.

Bonds between atoms act as "springs".
Near bottom of molecular potential well,
molecular potential approximately parabolic

Harmonic Oscillator.
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V

x

Potential 21( )
2

V x k x=

Turning point
Kinetic energy
zero; potential
energy max. Turning

point
Turning
point

Classical particle can never
be past turning point.

0x p∴∆ ∆ =
This can't happen for Q.M. harmonic oscillator.
Uncertainty Principle indicates that minimum Q.M. H.O. energy 0≠

Particle can be stationary at bottom of well,
know position, x = 0; know momentum, p = 0.
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One Dimensional Quantum Harmonic Oscillator
in the Schrödinger Representation

H Eψ ψ=

( ) 0H E ψ− =

2 2
2

2

1
2 2

dH k x
m d x

= − +


Schrödinger Representation

kinetic energy potential energy

2

2mEλ =


2 /mα π ν= 

Define

2
2 2 2

2 2

( ) 2 2 ( ) 0.d x m E m x x
dx
ψ π ν ψ + − = 



Substitute H and
definition of k.
Mult. by -2m/2.

( )
2

2 2
2

( ) ( ) 0d x x x
d x
ψ λ α ψ+ − =
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( )
2

2 2
2

( ) ( ) 0d x x x
d x
ψ λ α ψ+ − =

Find ( )xψ

Good from - .∞↔ ∞

Must obey Born Conditions

1. finite everywhere 
2.  single valued
3. continuous
4. first derivative continuous

Use polynomial method

1.  Determine              for  ( )xψ x →∞
2.  Introduce power series to make the large x solution correct for all x.
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( )
2

2 2
2

( ) ( ) 0d x x x
d x
ψ λ α ψ+ − =

2 2xα λ>>

2
2 2

2

d x
dx
ψ α ψ=

For very large x, as x goes to infinity.

Therefore, λ can be dropped.

Try

2 22
2 2 2 2

2

x xd x e e
dx

α αψ α α
± ±

= ±

2

2
x

e
α

ψ
±

=

Then,

This is negligible compared to the first term
as x goes to infinity.

2

2mEλ =

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Two solutions

2 2

2 2
x x

e e
α α

− +

This is O.K. at
x = ±∞ x = ±∞

This blows up at

Not finite everywhere.

2

2( )
x

x e
α

ψ
−

=

Therefore, large x solution is

2

2( ) ( )
x

x e f x
α

ψ
−

=

For all x

Must find this.
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2

2( ) ( )
x

x e f x
α

ψ
−

=

Need second derivative in Schrödinger equation

22
2 22

2

( ) ( 2 ' '')
xd x e x f f x f f

d x

αψ α α α
−

= − − +

' d ff
d x

=
2

2'' d ff
d x

=With and

Substitute 
2

2

( ) and ( )d x x
d x
ψ

ψ into the original equation

( )
2

2 2
2

( ) ( ) 0d x x x
d x
ψ λ α ψ+ − =

2

2
x

e
α

−
and divide by gives

( )2 0f x f fα λ α′′ ′− + − = Equation only in f.
Solve for f and have           . ( )xψ
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1 2 1 0.f x f fλ
α α

 ′′ ′− + − = 
 

divide by α

xγ α=

( ) ( )f x H γ=

substitute

2

2

( ) ( )2 1 ( ) 0.d H d H H
d d

γ γ λγ γ
γ γ α

 − + − = 
 

Gives

Hermite's equation

0 1 2 3
0 1 2 3( ) vH a a a a aν

ν

γ γ γ γ γ γ= = = + + + +∑ 

1 0 1 2
1 2 3

( ) 2 3dH a a a a
d

ν
ν

ν

γ ν γ γ γ γ
γ

−= = + + +∑ 

( )
2

2 0 1
2 32 1 2 6d H a a a

d
ν

ν
ν

ν ν γ γ γ
γ

−= − = + +∑ 

Substitute series expansion for H(γ)
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2

2

( ) ( )2 1 ( ) 0.d H d H H
d d

γ γ λγ γ
γ γ α

 − + − = 
 

substitute in series

0 1 2 3
2 3 4 52 6 12 20a a a aγ γ γ γ+ + + +

1 2 3
1 2 32 4 6a a aγ γ γ− − − −

0 1 2
0 1 21 1 1a a aλ λ λγ γ γ

α α α
     + − + − + −     
     

3
31 0.aλ γ

α
 + − + = 
 



The sum of these infinite
number of terms in all powers
of γ equals 0.

In order for the sum of all the terms in this expression to vanish identically
for any γ,
the coefficients of the individual powers of γ must vanish separately.

To see this consider an unrelated simpler equation.
5 4 3 2

5 4 3 2 1 0 0a x a x a x a x a x a+ + + + + =

Fifth degree equation.   For a given set of the ai, there will be 5 values of x
for which this is true.  However, if you know this is true for any value of x,
then the ai all must be zero.
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2 02 1 0a aλ
α
 + − = 
 

3 16 3 0a aλ
α
 + − = 
 

4 212 5 0a aλ
α
 + − = 
 

5 320 7 0a aλ
α
 + − = 
 

0γ  
1γ  
2γ  

3γ  

Even and odd series.
Pick a0 (a1 = 0), get all even coefficients.
Pick a1 (a0 = 0), get all odd coefficients.
Normalization set a0 and a1 values.

( )2

2 1

1 ( 2)
a aν ν

λ ν
α
ν ν+

 − − 
 = −
+ +

Recursion Formula

Coefficients of like powers of γ.
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In general

2( +1)( +2) 1 2 0a aν ν
λν ν ν
α+
 + − − = 
 

ν is an integer. Index in the expansion.



Have expression in terms of series that satisfy the diff. eq.

But not good wavefunction.

Blows up for large |x| if infinite number of terms.  (See book for proof.)

2

2( ) ( )e H
γ

ψ γ γ
−

=

2 2 2/ 2 / 2e e eγ γ γ−= =

For infinite number of terms and large |x|.

blows up

( )xγ α=

Unacceptable as a wavefunction.
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Quantization of Energy

2/2 ne γ γ−

If there are a finite number of terms in the series for H(γ), 
wavefunction does not blow up.  Goes to zero at infinity. 

The exponential goes to zero faster than γn blows up.

( )2

2 1

1 ( 2)
a aν ν

λ ν
α
ν ν+

 − − 
 = −
+ +

Then, because

with a0 or a1 set equal to zero (odd or even series),
series terminates after

ν = n a finite number of terms.

λ= α(2n + 1)

To make series finite, truncate by choice of λ.

n is an integer.
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Any value of λ with
λ =  (2n + 1)α

is O.K.  Any other value of λ is no good.

2

2 (2 1)2 /mE n mλ π ν= = + 



Therefore, 

definition of λ definition of α

1
2nE n hν = + 

 

Solving for E

n is the quantum number

00 1/2n E hν= =
Lowest energy, not zero. Called zero
point energy.

Energy levels equally spaced by hν.
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1
2nE n hν = + 

 

Energy Levels

( )
2

2( )n n nx N e H
γ

ψ γ
−

=

1
1 2
2 1

2 !n nN
n

α
π

 
  =   
   

Wavefunctions

2 /mα π ν= xγ α=

normalization constant

( )1 2H γ γ=

( ) 2 0
2 4 2H γ γ γ= −

( ) 3
3 8 12H γ γ γ= −

( ) 4 2 0
4 16 48 12H γ γ γ γ= − +

( ) 5 3
5 32 160 120H γ γ γ γ= − +

( ) 6 4 2 0
6 64 480 720 120H γ γ γ γ γ= − + −

( ) 0
0 1H γ γ=

Hermite Polynomials
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-4 -2 0 2 41-1 3-3

ψ ( )x

γ

0

 

Lowest state n =  0
2

2
1 1
4 4

2 2
0 ( )

x
x e e

α γα αψ
π π

− −   = =   
   

-4 -2 0 2 41-1 3-3
γ

( )ψ 2

 

Classical turning points 21/2 1/2kx hν=

potential      total
energy          energy2

/

hx
k

x h k

ν

ν γ

∴ =

= ± = ±
classical turning points - wavefunction extends into
classically forbidden region.

This is a Gaussian.
Minimum uncertainty.
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-6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 6

-6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 6

n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

 

More wavefunctions - larger n, more nodes
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-6 -4 -2 0 2 4 6

ψ ψ*

 

Probability for n =  10

γ

Looks increasingly classical.
For large object, nodes so closely spaced because n very large that
can't detect nodes.

Classical turning points
~γ = ± 4.6

Time classical oscillator
spends as a function 
of position.
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Dirac Approach to Q.M. Harmonic Oscillator
Very important in theories of 
vibrations, solids, radiation

2
21

2 2
p

H k x
m

= +

H E E E=

Want to solve
eigenkets, normalized

[ ], 1x P i= 

We know commutator relation

To save a lot of writing, pick units such that

1 1 1m k= = =

2 21 ( )
2

H P x= +

[ ], 1x P i=

In terms of these units

identity operator
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( )
2
ia P i x= − 1 ( )

2
a P i x

i
+ = +

a a+ =

Define operators

a+ is the complex conjugate (adjoint) of a since P and x are Hermitian.

1 1
2

a a H+ +∴ =

1[( )( )]
2

a a P i x P i x+ = − +

2 21 [ ]
2

P i xP i P x x= − + +

2 21 [ ( ) ]
2

P i xP P x x= − − +

2 21 [ ] [ , ]
2 2

iP x x P= + −

Then

Hamiltonian commutator
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1 1
2

a a H+ = +

Similarly

2 21 [ ( ) ]
2

a a P i xP P x x+ = + − +

1 1
2

a a H+ = −

, 1a a+  = 

and

[ , ]a H a= [ , ]a H a+ += −

Can also show

1 ( )
2

H a a a a+ += +

Therefore

Very different looking from Schrödinger Hamiltonian.
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Consider    ; eigenkets of H, normalized.

a E Q=

Q E a E a+= =

0Q Q ≥

0Q Q = 0Q =

scalar product of vector with itself

only if

0.Q Q E a a E+= ≥

We have

1 11 ( ) 0
2 2

E a a E E H E E E E+ = − = − ≥

Then

normalized, equals 11
2

E ≥Therefore,

E
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Now consider

a H E E a E= eigenket of H

[ ],a H a H H a a= − =

a H H a a= +

commutator

rearrange

H a E E a E a E= −

transpose

( 1)H a E E a E   = −   

a E   is eigenket with 
eigenvalue, E - 1.

eigenvalue eigenket

( )H a a E a H E E a E+ = =

Then,

H a E a E E a E+ =

factor

( 1)H a E E a E   = −   

these are same

is some ket.
Operate H on ket, get same ket back
times number.

a E

Copyright – Michael D. Fayer, 2018

1a E E= −

Maybe number multiplying.
Direction defines state, not length.

Label ket with eigenvalue.



a is a lowering operator.
It gives a new eigenvector of H with one unit lower energy.

1a E E= −
2 2a E E= −

3 3a E E= −

Each application gives new ket with one unit
lower energy.

1
2

E ≥

0
11
2

E − <

Could keep doing this indefinitely,
but

Therefore, at some point we have a value of 
E, call it E0,
such that if we subtract 1 from it

But E0 - 1 can't be < 1/2.  Therefore 0 0a E =

For eigenvector 0E

0 0
1( 1)
2

a a E H E+   = − 

0 0
1( ) 0
2

E E= − =

0
1
2

E =

0
1
2

E hν=

not zero

in conventional
units

( 1)H a E E a E   = −   
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Raising Operator

a H E E a E+ +  = 

( )a H E H a a E+ + +  = −  using the commutator

( 1)H a E E a E+ +   = +   

rearranging, operating, and factoring as before 

These are the same.

1a E E+ = +

a E+ 
 Therefore,                  is an eigenket of H with eigenvalue E + 1.

a+ takes state into new state, one unit higher in energy.
It is a raising operator.

number here, but direction defines state

( )H a a E Ea E+ + +− =
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0E is the state of lowest energy with eigenvalue (energy) 1/2.
Apply raising operator repeatedly.  Each application gives state
higher in energy by one unit.

0 0
3 1
2

H a E E+  = + 

2
0 0

5 2
2

H a E E+  = + 

3
0 0

7 3
2

H a E E+  = + 

0 0
1
2

H E E= eigenvalue, one unit higher in energy

1 3 5 7, , , ,
2 2 2 2

E = 

1
2nE n = + 

 

1
2nE n hν = + 

 
With normal units Same result as with Schrödinger Eq.
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Schrödinger vs. Dirac Approaches

1. Hamiltonian and method of solution,
mathematically very different, but 
eigenvalues the same.

2. Dirac, only needed Hamiltonian and commutator,
no auxiliary Born Conditions.

3. No wave functions in Dirac approach.  Wave functions
intermediate step in Schrödinger method.
Not necessary. Not real in sense not observables,
but can be useful in qualitative understanding.
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1
2

E n= +

Eigenkets labeled with energy

1
2

E n n= + = 

Can relabel kets with quantum number

Take        to be normalized.n

1na n nβ+ = + 1na n nα= −

1n nβ = +
n nα =

Raising and Lowering operators

numbers multiply ket when raise
or lower

( 1) 1a n n n+ = + + 1a n n n= −

Will derive these below.
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a a+ n

1a a n a n n+ += −

n n=

Consider operator

operating on 

a a n n n+ =

Therefore

n is an eigenket of operator         with eigenvalue n. a a+

a a+ number operator.   Eigenvalue – quantum number

Important in Quantum Theory of Radiation and Solids

aa+ and called creation and annihilation operators.
Number operator gives number of photons in radiation field
or number of phonons (quantized vibrations of solids) in crystal.
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Using the occupation number representation with normal units

1 ( )
2

H a a a aω + += +

1/ 22 ( / )k mω πν= =

( )1
2

H n a a n a a nω + += +

( )1/ 2 1/ 21 ( 1) 1 1
2

a n n a n nω += + + + −

( )1/ 2 1/ 2 1/ 2 1/ 21 ( 1) ( 1)
2

n n n n n nω= + + +

1 (2 1)
2

n nω= +

1 1
2 2

n n n h nω ν   = + = +   
   



n

Consider H n

Therefore,        are eigenkets of H with eigenvalues                     . 
1
2

n ω + 
 


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Units in the raising and lowering operators

1/ 2
1/ 2 1/ 2

1
(2 )

ia P i k x
mω

 = − 
 

1/ 2
1/ 2 1/ 2

1 1
(2 )

a P i k x
i mω

+  = + 
 

Many constants.   This is the reason
why derivation was done in units
such that                                         . 1 1 1m k= = =
Need constants and units to work
problems.

( )
( )

( )1/ 2
1/ 2

1 2
2

a a k x
ω

++ =


1/ 2
2k x
ω

 
=  
 

( )
1/ 2

2
x a a

k
ω + = + 

 



Add operators, P cancels.

x in terms of raising and lowering operators.

( )
1/ 2

2
mP i a aω + = − − 

 



Subtract operators, get P in terms of
raising and lowering operators.

1/ 2
1/ 2 1/ 2

1
(2 )

ia P k x
mω

 = + 
 

1/ 2
1/ 2 1/ 2

1
(2 )

ia P k x
mω

+ − = + 
 

Bring i inside.

Multiply top and bottom by –i,
and bring –i inside.
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Can use the raising and lowering operator representation to calculate 
any Q.M. properties of the H. O. 

Example
4x ⇒ for ground state, average value of x4

40 0x

In Schrödinger Representation

4
0 0x dxψ ψ

∞
∗

−∞
∫

Copyright – Michael D. Fayer, 2018



( )
1/ 2

2
x a a

k
ω + = + 

 



2
4 40 0 0 ( ) 0

2
x a a

k
ω + = + 

 



constant - C
4 3 2

4

0 0 0 0 0 0

0 ( ) 0

C a a a a a a

a

+ +

+

= + + +
+ 



Many terms.  Must keep order correct.  Operators don’t commute.
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Could write out all of the terms, but easier way.

Any term that doesn’t have same number of a’s and a+ = 0

Example 0 0 0 4a a a a+ + + + =

orthogonal = 0

Any operator that starts with a is zero.

0 0a =

Can't lower past lowest state.

0 0 0a a a a+ + =

Terms with            are also zero
because

0 a+

0 0

0 0

a Q

Q Q a+

= =

= = =
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Only terms left are

2
4

0 0

0 0

0 0 0 0 0 0
2

a a a a

aa a a

x a a a a a aa a
k
ω

+ +

+ +

+ + + +   ∴ = +    



( 1) 1a n n n+ = + + 1a n n n= −

0 1

0

0

0

0

0

0

1

0 1

a a aa a a a

a a

a

+

+

+ + =

=

=

= =

0 1

0 2 2

2 0 1 2

0

2 2

0

0 0

a aa

a a

a a a a

a

++ + =

=

=

= =

2 2
4

2
30 0
4

x
k
ω

∴ =
 No integrals. Must be able to count.
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Vibrational Wave Packet

ground electronic state

excited
electronic
state vibrational levels

short pulse optical excitation

pulse bandwidth

A short optical pulse will excite many
vibrational levels of the excited state
potential surface.

Launches
vibrational
wave packet
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Time dependent H. O. ket

Model Excited State Vibrational Wave Packet with H. O. States

/( ) niE tn t n e−= 

ni t
n

n
t n e ωα −= ∑
Superposition representing wave packet on excited surface

Calculate position expectation value - average position - center of packet.

t x t

( )
1/ 2

2
x a a

k
ω + = + 

 



* m ni t i t
m n

m n
t x t e e m x nω ωα α −= ∑ ∑

( )*

, 2
n mi t

m n
m n

e m a a n
k

ω ω ωα α +− −= +∑ 
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m a a n++

1m n= ±

( ) ( ){ }1 1( ) ( )* *
1 12

1n n n ni t i t
n n n n

n
t n nx t e e

k
ω ω ω ωω α α α α− +− − − −

− + +
 

= +  
∑

1n nω ω ω−− = 1n nω ω ω+− = −

( ) ( ){ }* *
1 12

1i t i t
n n n n

n
nt t e e nx

k
ω ωω α α α α−

− +
 

= 
++

∑

only non-zero

if

Then

But and
E ω∆ = 

This expression shows that         time dependent.
Time dependence is determined by superposition of vibrational states
produced by radiation field.  

x
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Simplify
Take n large so
n >1

Also,
αi = α

Otherwise
αj = 0

Each state same amplitude in superposition
for some limited set of states.

Using these

( )2

2
i t i t

n
t x t n e e

k
ω ωωα −= +∑

2 cos2 ( )
2 n

t x t n
k

tω ωα= ∑

Position oscillates as cos(ωt).
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Wave packet on potential surface,
modeled as a harmonic oscillator potential.

Packet moves back and forth.

I2 example
Ground state excited to B state

λ ~ 565 nm
20 fs pulse bandwidth  ~700 cm-1

Level spacing at this energy ~69 cm-1

Take pulse spectrum to be rectangle and all α excited same within bandwidth.
States n = 15  to  n = 24  excited (Could be rectangle)
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Cos +1  to  -1
distance traveled twice coefficient of Cos

24
2 n

n
k
ωα ∑

10 equal amplitude states.

2

2 22

13

0.1
1.05 10  g
1.3 10  Hz

k
α

µω µ

ω

−

=

= = ×

= ×

Distance traveled  =  1.06 Å.
Comparable to bond length – 2.66 Å.
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NaI Photodissociation - Zewail
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Every time the wave packets hit the outer potential wall, some tunneling
occurs and a little puff of products, Na + I, comes out.
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1na n nβ+ = + 1na n nα= −

To find  and n nα β

1

1
n

n

n a n

n a n

α

β+

− =

+ = Take complex conjugate

*
11 n nn a n β α ++ = =

Now

because  1/2
( 1/2) ( 1/

1

2 1 2)

( )

/

n a a n

a a H
H n n

n

n

+

+

=

= +

+ = + +

+

Work out

1

1

1

1

n

n n

n n

n a a n n a n

n n

n a a n n

β

α β

α β

+

+

+
+

=

=

= = +

+

from here
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But *
1n nβ α +=

2*

2*
1 1 1

1

1
n n n

n n n

n

n

β β β

α α α+ + +

= = +

= = +

Then

and

Therefore,

2 2
1 1n n nα β+ = = +

1 1n n nα β+ = +

True if

1n

n n

nβ

α

+

=

=
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