Chapter 15




Angular Momentum

Classical
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Q.M. Angular Momentum

In the Schrodinger Representation, use Q.M. operators for X and p, etc.
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Commutators

Consider
[i N ) y]: JJ,—-J,J substituting operators in units of 7
(& 7 0 7 Keep track of what
3,3, =-| yo--2- || 22— x—
\_52 oy O X Oz commutes.
(6.0 2.8 0.0 .38 0
=—| y—12 —y—X—-1Z Z +2 X
\—d17 X 01701 ~OyTIdx ~Iy 01
Similarly
o 0 o _ 0O
JyJy=-]2 Yool XYoo XL
OX=01 ~O0X~ 0y ~ 0101 0172y
Subtracting

7 7 7 o 0
(303, |=-|yoo| 02—z |+ x——|2—--—==2
=X\ 01 01 oy\~ 0z 212
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=1J, {%95} But [%,4 =1 because 0”0; — _B|Zh
1 1 |
_? Ez’z]:_?(_l)[Z9Ez] USiIlg [Z,Ez]z 1A
Therefore, ' |
1,.
[lxaiy]ziiz =G(Ih)=1

[ix,iy] =ihJ, in conventional units
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The commutators in units of 7 are

ixaiy = Iiz
_iy’iz_ - Iix
:iz9lx] - ily'

Using these it is found that
13,9, |=[3%3,]=[3%3,]=0

Components of angular momentum do not commute.

J? commutes with all components.
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Therefore,
J? and one component of angular momentum
can be measured simultaneously.

Call this component J..

Therefore,
J? and J, matrices can be simultaneously diagonalized
by the same unitary transformation.
Furthermore,
[ﬂ, J ] =0 (J looks like rotation)
Therefore,

[H,3|=0

H, J%, J, are all simultaneous observables.
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Diagonalization of J> and J,

J? and J, commute.
Therefore, set of vectors

|ﬂ, m> Labeling kets with eigenvalues.
are eigenvectors of both operators.

J * and J . are simultaneously diagonal in the basis |/1 m>

J*|Am)=4|Am)
(in units of 7)

J,[Am)=m|im)
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Form operators

‘J+=lx+iiy i—zix_iiy

From the definitions of J, and J_ and the angular momentum commutators,

the following commutators and identities can be derived.

Commutators
3.3, ]=-J,
3,3, ]=3
J.,d.]=2J,

Identities
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Expectation value
(Am|3*[Am)=(Am|J;|Am)

Because
(Am|I*[Am)=(Am|J;|Am)+(Am|I5|Am)+(Am]|I;|Am)

N

Positive numbers because J’s are Hermitian —
give real numbers. Square of real numbers — positive.

Therefore,
the sum of three positive numbers is greater than or equal to one of them.

Now
(Am|I*[Am)=2
(Am|J;[Am)=m?
Therefore,

, Eigenvalues of J? are greater than or equal to
Azm square of eigenvalues of J..
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Using

[l+ 9iz ] = _i+
— J,J,.=J.J,+J,
Consider

J,[J.]Am)|=d.3,|Am)+J,|Am)
=J.m|Am)+J,|Am)

- (m+1)[3.[4m)]
/ ~

eigenvalue eigenvector
Furthermore,
[i 2 J +J =0 J? commutes with J, because it commutes with J, and J,.

Then  3°[J,]am)]=J.3%|Am)

_2[3.[am)
eigenvalue T eigenvector
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3.[3.|am)]=(m+ ) 2. |4m)]
/

eigenvalue eigenvector

3’3, |Am)] ;ﬂ[i+|ﬂ~m>]

Ld \ L3
eigenvalue eigenvector

Thus,

J, |ﬂ,m> is eigenvector of J, with eigenvalue m + 1

and of J? with eigenvalue A.

J. is a raising operator.
It increases m by 1

and leaves A unchanged.
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Repeated applications of
i+ to |ﬂ, m>

gives new eigenvectors of J, (and J?) with larger and larger

values of m.

But,
this must stop at a largest value of m, m,

because
A>m?, (M increases, A doesn’t change)

Call largest value of m (Mm_,,) J.
mmax = j

For this value of m, thatis,m = j
J.|Ai)=0  with 2j)=0

Can’t raise past max value.
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In similar manner can prove

3 |am)
is an eigenvector of J, with eigenvalues m — 1
and of J* with eigenvalues A.

Therefore,
J_ is a lowering operator.

It reduces the value of m by 1 and leaves A unchanged.

Operating J_ repeatedly on |/?. j>
NEY)
\ largest value of m

gives eigenvectors with sequence of m eigenvalues

m = ja j_la j_29"'
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But,

A>m?

Therefore, can’t lower indefinitely.

Must be some

21
such that
J [Aj)=0 with 2])#0
\ Smallest value of m.
Can’t lower below smallest value.
Thus,
= ]' + an integer. Went from largest value to smallest
\ value in unit steps.
largest value smallest value

of m of m

Copyright — Michael D. Fayer, 2018



We have largest value of m

\

i+|lj> =0

J_|2j)=0
smallest value of m

Left multiplying top equation by J_ and bottom equation by J.

J J.|Aj)=0 JJ,=J3"-3;-7J,
identities
i+i— AJ’>:0 i+i— :iz_lg'*'iz
g g |aiy=0=(22-01-,)|4 )
3.3 A7)=0=(2"-20+2,)47)
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Aj)

3.3, 040)=0=(2-"=i)|A)) 2.3 |2i)=0=(2-]"+])

Because |,1 j> +0 and |/1 j’> %0
the coefficients of the kets must equal 0.

Therefore,
A=j(j+1) and A=(-])(=j+1)

Because | > |’

and
2] = an integer j =integer/2; | can have integer

or half integer values.

because we go from | to ' = -] in unit steps with lowering operator J_ .

Thus, the eigenvalues of J? are

A=j(j+1) and ]=0, %, 1, %, (largest m for a 1)

The eigenvalues of J,are m=j, j—1,---,— J+1, — ]

largest m change by unit steps smallest value of m
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Final results
J*[im)=j(i+D[jm)
J,[im)=m|jm)
There are (2) + 1) m-states for a given |, going from j to — in integer steps.

Can derive

3.]im)= (i =m)(j+m+1)|jme+1)

3_[im)=(i+m)(j-m+1)|jm-1)
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Angular momentum states can be grouped by the value of |.
Eigenvalues of J>, 4 = j(j + 1).

j=0,12,1,3/2,2,-

j=0 m=0 00)
j=12 m=12, -12 1l> ‘1 —1>
22/ |2 2
j=1 m=1,0, -1 11) [10) |1 -1)
=32 m=32,12,-12, -3/2 33>‘31>‘3 —1>‘3 _§>
22/122/|2 2/[2 2
j=2 m=2,1,0,-1, -2 22)[21) [20) |2 1) |2 -2)

etc.
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Eigenvalues of J ? are the square of the total angular momentum.

The length of the angular momentum vector is

NIIGER)) or in conventional units A/ j(j+1)

Example j =1 7 Eigenvalues of J, are the
: projections of the angular
1

momentum on the Z axis.
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The matrix elements of J ? J, J, J_ are

m’|J*|jm

m
\/(j -m)(j+m+1) 6,6, .

m’|J_| jm :\/(j+m)(j—m+1) 5j'j§m',m—1

< )=
< )
(i'm’[3,]im) =
< )

The matrices for the first few values of | are (in units of 7% )

i=0 j =12

3, =(0) 1 =(0) L{“ lj ;_{" “J
= 0 0 = 1 0
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(0 V2 0 (0 0 0
J.=[0 0 V2| 3 ={v2 0 o
KOOOJ L0 \/E())
10 0 2 .0 0
J,=[0 0 0 J'=|0 2 0
0 0 -1 0 0 2

The | | m> are eigenkets of the J * and J, operators — diagonal matrices.

The raising and lowering operators J, and J_ have matrix elements
one step above and one step below the principal diagonal, respectively.
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Particles such as atoms

lw)=R(Y,"(6,p)

\ spherical harmonics from solution of H atom

The Y,"(9,¢) are the eigenvectors of the operators

L?> and L,.

The
Yzm(99¢) = | J m> = |€m>

LY, (8,p)=L(L+1)Y,"(6,p)
LY, (@,9)=mY,"(0,p)
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Addition of Angular Momentum

Examples

Orbital and spin angular momentum - / and s.
These are really coupled — spin-orbit coupling.

ESR - electron spins coupled to nuclear spins

Inorganic spectroscopy — unpaired d electrons

Molecular excited triplet states — two unpaired electrons

Could consider separate angular momentum vectors
J; and |,
These are distinct.
But will see, that when they are coupled, want to combine
the angular momentum vectors into one resultant vector.
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Specific Case

] 1 . 1
h = Jzzi

2
m1=i% m2=i%

Four product states

jl ml j2 m2 mlmz
11\11\ |11 j; and j, omitted because
2 2/(22 2 2 they are always the same.

Loy
22/]2 2 2 2 Called the m;m, representation

11 The two angular momenta are
- _E P considered separately.
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|m1m2> — j1j2m1m2> m,m, representation

Want different representation ==ssip- Unitary Transformation to
coupled rep.
Angular momentum vectors added.

New States labeled | jm>
| jljzjm> = | Jm>

jm representation
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| jm> == Eigenkets of operators in jm representation.

iz and J,
where

l :il +i2

iz - ilz "'izz

J*|jm) = j(ix1)|im)
\ vector sum of j, and j,

J,|im)=m|jm)

Want unitary transformation from the m;m, representation
to the jm representation.
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Want

| Jm> - Z lemz

m;m,

m1m2>
Croym, =(m,m, | jm)

Cmm, are the Clebsch-Gordan coefficients; Wigner coefficients;
vector coupling coefficients

|m1m2> are the basis vectors

N states in the m;m, representation =smp- N states in the jm representation.

N :(Zjl +1)(2j2 +1)

J? and J, obey the normal commutator relations.

Prove by using J=J.+J,

and cranking through commutator relations

using the fact that J, and J, and their components commute.
Operators operating on different state spaces commute.
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Finding the transformation

J,=J,+J,, = m=m+m, orcoupling coefficient vanishes.

To see this consider

| Jm> - Z lemz m1m2>

Operate with J, equal
— | . |
lz | Jm> = m| Jm> — (ilz +i22) Z Cmlm2 m1m2>
I I
- Z (m1 T mz)lemz |m1m2>

These must be equal. m,m,
Other terms
Com, =0
if

m,+m, #m
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Largest value of m

m=j,+j, =m"™ +m;™
since largest

m, = J, and m, =],
Then the largest value of | is

I=hi+1

because the largest value of | equals the largest value of m.

There is only one state with the largest
J and m.

There are a total of (2j + 1) m states associated with the largest J= ], + ], .
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Next largest m (m—1)

m = j1 + jz -1
But m=m,+m,
Two ways to getm -1

m,=j and m,=j,-1

m,=J,—1and m, = |,

Can form two orthogonal and normalized combinations.

One of the combinations belongs to
j = j1 + jz
Because this value of | has m values
m = (J1 + j2)9 (J1 + jz _1)9"'9(_j1 - Jz)

Other combination with m=j, + j, -1
) ‘= + ), -1

with m:(j1+jz_l)a(j1+jz_z)a"'a(_j1_j2+1)
largest smallest
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Doing this repeatedly
sl | values from

j — jl + j2 tO ‘jl - jz‘ in unit steps

Each | has associated with it,
its 2] + 1 m values.
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Example

T
b2t 2
j values——j = | + |, to ‘j1_ Jz‘ in unit steps.
2 2
1 1
=———=0
. 2

j=1 m=1,0,—1

J=0 m=0
jm rep. kets 11),[10), [1-1),/00)
m,m, rep. kets ‘1 l>, 1 _1>, 1 1>, _1 _1>
22/712 2/7] 22/7] 2 2

Know jm Kkets i still need correct combo’s of m;m, rep. kets
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Generating procedure

Start with the Jm ket with the largest value of | and the largest value of m.

11)
J,in=111 —nsr
But m=m+m,
Therefore,
1 1
ml = m2 = E

because this is the only way to get

m+m, =1

Clebsch-Gordan coefficient =1
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Use lowering operators

J =3, +J, =11
7 . 22
jm m,m, jm/ o
1M
J_[11)=+/2|10)
from /(il+ iz_)‘ll>=il— ll>+i2_ 11>
lowering 22 22 22
op. expression
D LA L .
2 2 2

from
\ / lowering
op. expression
Clebsch-Gordan Coefficients (Use correct j: and m; values.)
| | °
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Plug into raising and lowering op. formulas correctly.

3.[im)=(i-m)(j+m+1)[ jm+1)

3_[im)=(i+m)(i-m+1)|jm-1)

For jm rep.—>|jm>
plug in j and m.

For m;m, rep. —»|m1m2>
|m1m2> means |j1j2m1m2>

For J, and J, must putin
j, and m when operating with J,_
and

j, and m, when operating with J,_
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Lowering again

J_[10)=+2]1-1)

p i)

Therefore,

Have found the three m states for j =1 in terms of the m,;m, states.
Still need |00)

m=0=m, +m,
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Need jm |00>

Two m;m, kets with m+m, =0

1 1\ 11
2 2/7| 22

The |00> is a superposition of these.

Have already used one superposition of these to form |10>

1 11
22

1 1\ 1
2 2/ 2

10)= —
0=
|00> orthogonal to |10> and normalized. Find combination of
normalized and orthogonal to |10> .

1|1 1 1| 11
|"°>/=$5‘5>/‘$‘55>

Clebsch-Gordan Coefficients

11
2 2/

11
22
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Table of Clebsch-Gordan Coefficients

ji=1/2 L 1.0 1]
),=1/2 1 0 0 -1 m
1 1
2 711
L 1 1
2 2 L2 2
211 1 -1
2 2 2 2
1
7 72 I

Copyright — Michael D. Fayer, 2018



Next largest system

: .1
Lh=1 Jz:E
m, =1,0,—1 m, :1,—1
2 2
m,;m, kets 1l 1 ()1 0—1 _11 -1
2 2 2 2 2
jm states
i—iije)  med L1 3
1 2 2 29 29 9 2
i=i-h=y  om=o, -
1 2 ) 29 2

im kets 33\ 31VI3 TV 3 3\ 11yl 1
22/ 22/ 12 2/ |2 2/ [22/|2 2
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Table of Clebsch-Gordan Coefficients

ji=1
],=1/2

—

—

)

O

3 3 1 3 1 3
2 2 2 2 2 2
3 1 1 1 1 '3
2 2 2 2 2 2
12
3 \3
2 _1
3 \3
2 1
3 3
1 _ 2
3 3
jm
Example 11
22
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