Chapter 14




Density Matrix

State of a system at time ¢ | t> — zCn (t)| n> {| n>} orthonormal basis set

Contains time dependent
phase factors.

Cn(t)|2=1 = |t> normalized

2,

n

Density Operator
p(0) =) ]

We’ve seen this before, as a “projection operator”

Can find density matrix in terms of the basis set {| >}
n

Matrix elements of density matrix:
p; () =(i| p(t)|J)

= (ile){]j)
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Two state system:
1) =C,(0)|1)+ C,(1)]2) (t| = C{(O 1]+ C,(0)(2]

Calculate matrix elements of 2x2 density matrix:

Pu :<1|t><t|1>

~1llc\+c. 12l ¢ (1l+c: (2] |1 Time dependent phase
< |[ 1| >+ 2| >][ 1< |+ 2< |]| > factors cancel. Always
p, =C,C, have ket with its complex

conjugate bra.

o = (1)(1[2) oo = (2l0)(e]1)

P = CIC; Pn = C2C1*

Py = <2|t><t|2>
P = C2C;
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In general:

1)=2.Coli)
|t><t|=Z;C,-(t)|i><j|c;f(t)

py(t)=(it){t]])
zl(;;c‘ ()| k) |Ci(r)}|j>

p;(t) = C,-C; ij density matrix element
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2x2 Density Matrix:

C.C, (G,
C,C; GG,

p(t)= {

C,C, = Probability of finding system in state |1>
C,C, => Probability of finding system in state |2>

Diagonal density matrix elements = probs. of finding system in various states
Off Diagonal Elements = “coherences”

Since  >[C, ()| =1
Irp(t)=1 trace = 1 for any
dimension
And (trace — sum of diagonal matrix elements)

Pi = p;i
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Time dependence of P(?)

. dp(t)
L=t
dp0)_(a a
— _(dt t>]<t|+|t>(dt<t|] product rule

Using Schrodinger Eq. for time derivatives of |t> & <t|

_d|r) dlt) 1

h_=H t > =

" _| > dt ihﬂ t>
(1] d{t] 1
—ih— = {¢t|H > _

" < |_ dt  —ih <t|—
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Substituting:

dB(t)_ 1 i
dt  ih H(n)[t)(e]+ _ih|’><’|ﬂ(t)

dp(t) 1

dt  ih

[H@)|1)(t|-|1)(e| H®D) ]

N

density operator

1
=— | H®,p(0)|
Therefore:

inp(t)= H(®),p(1) |

The fundamental equation of the density matrix representation.
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Density Matrix Equations of Motion
. i
py=——| H(t).p(0)|

since p, = C,C;

,l.? _C {dC; J N C*(dC,. J time derivative of
ij i '

dt T\ dt density matrix elements

=C, C,+ C; C by product rule

For 2x2 case, the equation of motion is:

pll p12 :_i{|:H11 H12:||:p11 p12:|_|:p11 p12:||:H11 H12:|}
> h H21 H22 p21 p22 p21 p22 H21 H22

_p21 p22_

. [
Pu = _gl(ann +H,p,)—(p,H + p,H, )l

. [
Pu = _g(HIZIOZl -H, p,,)
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Pu P :_i{|:H11 H12:||:p11 p12:|_|:p11 p12:||:H11 H12:|}
> ° h(|H, H, | Py Pn Pn Pnl|lHy H,

Pxn P

. i
Py = _g[(ann +Hy,00)—(puHy, + prH, )]

. I
Py = _5[(H11 —Hy,)p, + (P — p11)H12]

Equations of Motion — from multiplying of matrices for 2x2:

. . ] for 2x2 because

Pu=—"Pn= _E(Hupn -H,,p,) P+ ppr=1 (traceof p=1)
. .. i .
P2 =P~ _;[(Hn —Hy,)p, + (P _pn)Hn] P12 = Po

for any dimension
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In many problems:

H=H,+H,()
time / \ time
independent dependent

e.g., Molecule in a radiation field:

H , = molecular Hamiltonian

H ,(t) = radiation field interaction (I) with molecule

Natural to use basis set of H

ﬂ0|n> = En

n> (orthonormal)
(time dependent phase factors)

Write |t> as:
1) =2.C,@®)|n)
n '\

Eigenkets of H
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For this situation:

PO =~ Hr (0),p0]

time evolution of density matrix elements, C;(?), depends only on H ,(¢)

— time dependent interaction term

See derivation in book — and lecture slides.
Like first steps in time dependent perturbation theory

before any approximations.

In absence of H ,, only time dependence from time dependent phase factors
from H,. No changes in magnitudes of coefficients C;;.
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Time Dependent Two State Problem Revisited:
Previously treated in Chapter 8 with Schrodinger Equation.

Basis set {|1>,|2>} = degenerate eigenkets of H

No H
o H,[1)= E[1)=1a, 1)

H,[2)= E[2)=ha |2

Interaction H,

H,[1)=p]2)
H,|2)=np1) hfB =y of Ch. 8
Thematrixgl - —h—o B
=7 _ﬁ 0

Because degenerate states, time dependent phase factors cancel
in off-diagonal matrix elements — special case.
In general, the off-diagonal elements have time dependent phase factors.
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i

Use  pO)=—L[H,0.p0)] HI:h|:; ﬂ

« {|:0 ﬂ:”:pn :qz:| |:p11 :qz:||:0 IB:|}
p=-—h -
- h B 0o P n PullB 0
,bn — —i[(Opn + ,szl) - (pn 0+ p12,B)]

=—if(py — P1) =P, — P2)

Multiplying matrices and subtracting gives

°* . (P12 P21) (L= P2)
p=ip
= —(Pu=Pn) —(Pn—Pu)
Equations of motion of density matrix elements:

;711 =if(0n— Pu) o
~ Probabilities

,[722 =—if(P,— Ps1) D

~

P =iB(Py— Pr)
. e ~ Coherences

,[721 =—if(py— P) D
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Using ,bn =if(pi= Pu)
Take time derivative ,b.n =ip (,2712_ ,‘521)

Substitute ;.)12 & /.721 ,[?12 =if(py— P2) 1521 =—if(p,— Py)

,27.11 = _Zﬂz (,011 — pzz)

Using Tr p=1,i.e., p,+p,, =1 d cos’ (Bt)/dt = =2 B cos(St)sin(Bt)
Then p,, =1- p,, d’cos®(Brydt’ = 28*(sin’(Bt)— cos’ (Bt))
but sin’(Bt)=1-cos’(B¢)
and P =28"-48%p, then d’cos®(Bt)dt* =28%(1-2cos’ (1))
For initial condition p =1 atz=0. =2p" -4’ cos’(Bt)
Pu = cosz(,Bt) B =ylh
D,, = sin’(Bt) From Ch. 8

Same result as Chapter 8 except obtained probabilities directly.
No probability amplitudes.
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Can get off-diagonal elements

/.712 =if(pu— P2)
Substituting:

p., =iB(cos’ Bt—sin’ Bt)
Dy = i,Bj(cos2 St —sin’ ,Bt)dt

P =5 5in(2f1)

j cos® xdx = (1/2)x + (1/ 4)sin 2x
[ sin* xdx = (112)x - (1/4)sin 2x

Since p,; = p;

pu == 5in(2 1)
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Density matrix elements have no time dependent phase factors.

1)=2C0li)
|t><t|=Z;c,-(t)|i><j|c;(t)

p; (1) =(i|t)(z]j)
(i [;ch(t)\kxz\c;m)\ )

=C, (t)<i‘ i> C; (t)< j‘ j> Fime dependent.phase .fa.ctor in ket, but

'\ its complex conjugate is in bra. Product
is 1. Kets and bras normalized, closed
bracket gives 1.

= C,(0C; (1)

p;(t)=C(t )C; (#)  ij density matrix element

N

Time dependent coefficient, but no phase factors.
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Can be time dependent phase factors in density matrix equation of motion.
. i
py=——{ H®,p(0) |

For two levels, but the same in any dimension.

H =(H11 lej |1> _ 1s>e—iE1t/h
H, H, |2>: 2s>e—iE2t/h

1s>eiE1t/he—iE1t/h _ <1s

s — spatial

H|1s> no time dependent phase
o factor

H, = <1|H|1> - <1s H

2s>eiE1t/he—iE2t/h _ <1S 2s>ei(E1—E2)t/h

H

H,, = <1|ﬂ|2> - <1s H

time dependent phase factor
if £, #E,.

Therefore, in general, the commutator matrix,

[g (1), E(t)} when you multiply it out,

will have time dependent phase factors if E, # E,.

Copyright — Michael D. Fayer, 2018



Expectation Value of an Operator
(4)=(t|4]r)
Complete orthonormal basis set {| ]>}

IYIO

Matrix elements of A

A; = (il 4]j)

Derivation in book and see lecture slides
(4)=1r(p(0)4)

Expectation value of 4 is trace of the product of density matrix with
the operator matrix 4 .

Important: p(¢) carries time dependence of coefficients.

Time dependent phase factors may occur in off-diagonal matrix elements of A.
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Example: Average E for two state problem = "= «E
E-hpB
E=(H)=TrpH
E #np Time dependent phase factors cancel
o = H,+ g ;= 7 E because degenerate. Special case.
= p In general have time dependent phase factors.
TrpH =Tr Pu Pul| E hpB iny need to c.alculate the
== Oy Py ||BB E diagonal matrix elements.
= puE + p,hf + py if + pr E
=E(p,+py)+ hﬂ(plz + P21
. . i .
Py, = cos’(fBt) 0,, = sin’(Bt) P = %sm(z Bty p, = —Esm(Z,Bt)

(H )= E (cos’ Bt +sin® Br)+ %(sin 2t —sin2Bt)

=F

Copyright — Michael D. Fayer, 2018



Proof that only need consider
. i
ply=——| Hi (1), p(0)|

when working in basis set of eigenvectors of H,,.

Working with basis set of eigenkets of time independent piece of Hamiltonian,
H,, the time dependence of the density matrix depends only on the time
dependent piece of the Hamiltonian, H,.

Total Hamiltonian

H=H,+H,()

H, time independent

n)

Use {|n>} as basis set.

)= 3,0l

ﬂ0|n> = En
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Time derivative of density operator (using chain rule)

(e £al)

Use Schrodinger Equation and its complex conjugate

1 1
- L a) e+ o

1 1 1 1
=—H, t><t|+ﬁﬂ’|t><t|+ﬁ|t><t|ﬂ°+:‘h|t><t|ﬂl (B)

Substitute expansion |t> = ZCn (t)|n> into derivative terms in eq. (A).

(%zc n>]<t|+|t>(%;c;‘ <n|]

o))t i) e+l e ol 10 Tz tol]

n n

ze
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Using Schrodinger Equation

_ 1 Right multiply top eq. by /;| .
(B i)y ‘
[ C. i< |J — L<t| H, Left multiply bottom equation by |t> .
~ "dt —ih '
Gives

1
(; C., dt n>j< | it —4H, t><t| Using these see that the 1%t and 3¢ terms
in (B) cancel the 2" and 4t terms in (C).

d 1
O Sl | = el
1 1 1 1
ol )|+ —H [0)(t|+ —— || 2y +—|1) (1| H, (B)

- (St i+ S, n i+l Sestol )+l S tul] - ©

n n
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After canceling terms, (B) = (C) becomes

(Sl 1o £ o) - A 1.0]

n

Consider the ij matrix element of this expression.

The matrix elements of the left hand side are

2 Cailme] 1)+ (i) 2 Ca ()

n n

poy === H,0,p0)]

In the basis set of the eigenvectors of H,,
H, cancels out of equation of motion of density matrix.
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Proof that (¢|Af) <4>=Tr(£(t)é)

Expectation value

(4)=(t]4]r)

{| ]>} complete orthonormal basis set.

=30l

Matrix elements of A

4=l
ao)=(Zei ) Ze )

=2 C,(OC;(0)(i|4]))
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p; =(j|p®)i)

note order . .
= (o) (e]i)
=C;()C,(1)
Then
(tl4]e) =2 {i| p®|i)(i| 4] j)

Matrix multiplication, Chapter 13 (13.18)

N
Co = Zbk,-“,-,-
i=1

<t|A|t> like matrix multiplication but only diagonal elements —
Jj on both sides.
Also, double sum. Sum over j — sum diagonal elements.

Therefore, (A)= Tr( p(t) 4)
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Coherent Coupling by of Energy Levels by Radiation Field

Two state problem

|2> T E, =7,
radiation
AE =ho, field

E =0

1) |
2 electronic states S, «—— S,

2 vibrational states V, «——V

NMR - 2 spin states, magnetic transition dipole

In general, if radiation field frequency 7@ is near AE, and other transitions
are far off resonance, can treat as a 2 state system.
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Molecular Eigenstates as Basis
H,[1)=E\1)

H,|2)=E,|2)
Interaction due to application of optical field (light) on or near resonance.
H ,(t)=hex,, E, cos(wt)

ex,, = transition dipole operator
x polarized light
E, = amplitude
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H , couples states
<1| H, (t)|2> = hE, cos(at) <1|e X5 |2> take out time dependent phase factors

=hE,cos(wt)e™"" (I'|ex,[2)e ™" E =0 E,=ha,

=hu E, cos(@ t)e—ia)ot \ M is value of

transition dipole bracket,

<2| H, (t)|1> =hu E, cos(wt)e' " Note — time independent
kets. No phase
Take u real (doesn’t change results) factors. Have taken

phase factors out.
Define Rabi Frequency, @,

o, =pE,

Then (1|H ,(8)|2) = ho, cos(wt)e™™

<2|E1 (t)|1> = ho, cos(wt)e™
H (t) matrix:

H,(1)=1

0 o, cos(wt)e”" "
o, cos(wt)e " 0
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General state of system  |¢) = C,(¢)[1)+ C,(¢)|2)

Use g(t) = —%[g, (t)ag(t):|
;) _ _i. % 0 QJICOS(Q)t)e_iwot ] —,011 A
= h| | wcos(wt)e™ 0 P21 Pn
P A Il 0 w,cos(wt)e
21 P2 _wlcos(a’t)eiw()t 0
p.ll l.)IZ —
_l.) 21 /.) 22 |
i@, cos(w?t )(eiwotpn - e_iwﬂtpn) i cos(@t)e " (py — pyy)
~iw,cos(ot)e' " (p; - py) —ia’lcos(a’t)(ei%tplz —e _iwﬂtpzl)

Blue diagonal
Red off-diagonal
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Equations of Motion of Density Matrix Elements

Prr = ia’lcos(wﬂ(eiwotplz - e_iwotpzl)
Py = —i(olcos((ot)(eiw“’ Py —e " p21)
;’12 = iw;cos(wt )e_iwot(Pn —Pn)

;721 = _iwlcos(a”)eiwot(pll ~P22)

Put Py =1 = P =" Pxn
P2 = Po = /.)12 = /.);1
Treatment exact to this point (expect for dipole approx. in p).
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Rotating Wave Approximation
1/ . .
cos(wt) = E(e"‘” +e ' )

Put this into equations of motion
Will have terms like

T i(wy—w)t T i(wytw)t

and
But o, ~
Terms with (@, + ®) ~ 2w, off resonance = Don’t cause transitions

Looks like high frequency Stark Effect
-> Bloch — Siegert Shift

Small but sometimes measurable shift in energy.

Drop these terms!
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With Rotating Wave Approximation

Equations of motion of density matrix

,011 = ’%(ei(wo_w)tplz - e_i(wo_w)tpn)
Pzz _’%(ei(%_w)tplz - e_i(wo_w)tpn)
Prz = ’%e_l(wo_w)t(i’n —Pn)

;321 i% l(wo_w)t(,on P12)

These are the
Optical Bloch Equations for optical transitions

or just the Bloch Equations for NMR.

NMR-w, =41 H, H, — oscillating magnetic field of applied RF.
M, — magnetic transition dipole.
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Consider on resonance case @ = o,

,011 = ’%(ei(%_w)tplz - e_i(wo_w)tpzl)

*  _ 0 i(wy-)t —i(@y—w)t

P = —1—(e " pp—e T le) Equations reduce to

. ; O

Py = i%e_l(w" w)t(pll £27) ,011 2 (plz p21)

@, Py =i ﬂ(,0 ~ P)

Pz1 —lTel(wo_w)t(,On — 0yy) 22 5 P12 21
. . O,

All of the phase factors = 1. P = 17(,011 ~Pxn)

° .a)
P = _171(,011 — Pn)

These are IDENTICAL to the degenerate time dependent 2 state problem
with § = o,/2.
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On resonance coupling to time dependent radiation field induces transitions.

2) A
Looks identical to time independent
coupling of two degenerate states.
AE - hd)o = w()
In effect, the on resonance radiation
field “removes” energy differences and
time dependence of field. 1) . 4

Start in ground state, |1> pu=8L p,=0, p,=0, p,, =0 ati=0.

Then )
@ »
Py = €0s” (—— P, = —sin(@,f)
2 2
_ sin2 (2L i
P, =sin"( 5 Py = —Esm(a)lt)

populations coherences
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,t . 2,0t .
Pu = COSZ(TI P = Slllz(T1 populations

Recall w, = u E, = Rabi Frequency

ot=r = p;=0, py=1

This is called a 7 pulse = inversion, all population in excited state.

W, t :% = p,=05, p,,=05

This is called a /2 pulse = Maximizes off diagonal elements p,,, p,,

As t is increased, population PR pulse
oscillates between ground §_
and excited state at Rabi frequency. g °°

% 0.6
—Transient Nutation =

. = 04

—Coherent Coupling =

| 0.2}

SY

/ t
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Off Resonance Coherent Coupling

Aw = a,— A Amount radiation field frequency is off resonance from transition frequency.

1/2 .
Define o, = (Aa)2 + wf) = Effective Field @; = #E, - Rabi frequency
For same initial conditions: p,, =1; p,,=0, p,=0, p,, =0

Solutions of Optical Bloch Equations

2 .
p, =1-Zhsin*(w,t12)  pp, = “’_;[ ";’e sin(@,?) — Awsin’ (a)et/Z)} g Bt
o, @

e
2

Py = —Lsin’(w,1/2) a1 = 1|~ sin(w,1) - Awsin’ (@,112) [
@, o, 2
Oscillations Faster 2 o, max _ Of

Max excited state probability: Pn = el

e

(Like non-degenerate time dependent 2-state problem)
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Near Resonance Case - Important
1/2
@, >> Ao o, = (Aa)2 + (012)
Then a, =0,

P15 Py, Feduce to on resonance case.

i . _iA
Dy = —sin(w,t)e” >
12 1
2 Same as resonance case

; . except for phase factor
P == sin@i1)e™” v
For 772 pulse, maximizes p,,, p,,
@t=r/2
But Awt<<mw2=0 because @ >>Aw

Then, p,,, p,; virtually identical to on resonance case and
P11> Py SAMeE as on resonance case

This is the basis of Fourier Transform NMR. Although spins have
different chemical shifts, make w, big enough, all look like on resonance.
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Free Precession
After pulse of 0= w,t (flip angle)

On or near resonance immediately after the pulse (1 = 0)

P11 = cos’(6/2) Py = %sin@
i
Dy, =sin’(6/2) Day = —Esmé’
After pulse — no radiation field.

Hamiltonian is H,

. i
b= Hoe]

0 0
H =h
—0 0 o
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t=0is at end of pulse
Solutions

Py = a constant = p,.(0)
Py, = a constant = p,,(0)

Populations don’t change.

0 0 .
H2:||: :|} Pu =
P |0 o .
Pn =

P =10, Py,

Py = 10y Pry

P12 = P12 (0)e ot

—iwt

P21 = P21 (0)e

Off-diagonal density matrix elements
-> Only time dependent phase factor
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Off-diagonal density matrix elements after pulse ends (z = 0).

Consider expectation value of transition dipole < £> . Recall u=ex,,

|1> |2> No time dependent phase factors.

</l> —Trpu 3 <1| 0 4| Phasefactors were taken out of x as part
== K= <2| u 0 of the derivation. Matrix elements
involve time independent kets.
0 0 eia)ot
TI’££=TI’[ pll(_)iw t P12 (0) }|:O /(;j| t =0, end of pulse
T P21(0)e pPn(0) LA

(1) = 1] P + pyy (O)e ™™ |
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(1) = 2] 2 (@)™ + 3y ()™ |
After pulse of 0= w,t (flip angle)

On or near resonance p , (0) = %sinﬁ P21(0) = —%siné’

i . ot L. i@t
= | —sin@e " ——sin@e "

< £> = ,uBsin Olcos(wyt) +isin(@ )] - %sin Olcos(m(t) - isin(a)ot)]}

<£> =—usin@sin(w,t)
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<ﬁ> =—usindsin(w )

Oscillating electric dipole (magnetic dipole - NMR)
at frequency @,, -> Oscillating E-field (magnet field)

Free precession.

Rot. wave approx.
Tip of vector goes in circle.

Z

2 [J [
I |E | for ensemble, coherent emission
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Pure and Mixed Density Matrix

Up to this point - pure density matrix.
One system or many identical systems.

Mixed density matrix =»
Describes nature of a collection of sub-ensembles each with different properties.
The subensembles are not interacting.

P, = probability of having k,, sub-ensemble with density matrix, p,.
0<P,P,--P,-<1

and ZP k= Sum of probabilities (or integral) is unity.

Density matrix for mixed systems
pt) = 2 I,PkBk(t)
= - =

or integral if continuous distribution

Total density matrix is
the sum of the individual density matrices times their probabilities.
Because density matrix is at probability level, can sum (see Errata and Addenda).
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Example: Light coupled to two different transitions — free precession

A

Light frequency o near

@
Dor " @y & @y,

Difference of both @), & @,, from » small compared to w;,,
that is, both near resonance.

Equal probabilities - P,=0.5 and P,=0.5

For a given pulse of radiation field,
both sub-ensembles will have same flip angle 6.

Calculate
(#2)=Tr plo)

=2 BTrp, p
k
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Pure density matrix result for flip angle &

< £> = —usin@sin(w,t)

For 2 transitions - P,=0.5 and P,=0.5

< £> =— % usin H[Sin(a)mt) + sin(a)ozt)]

_ . . |1 1 from trig.
= —ﬂ Sin 0 {Sln I:E (0)01'*‘ a)oz )til COS I:E(a)()l_ a)oz )til} identities

Call: center frequency = ®,,  shift from the center = ¢
then, o), =@w,+J5 and @a,=0,-7,
with 0<< @,

Therefore, < ,t_t> =—U sinH[sin(a)Ot) cos(5t)]

S

high freq. oscillation low freq. oscillation, beat

Beat gives transition frequencies — FI-NMR
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0.5 K

Amplitudes 9:1 — not 100% modulation, o, =20.5; ®y, =19.5
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Equal amplitudes — 100% modulation, oy, =21; @y, =19

A




Free Induction Decay center freq

Identical molecules have AN “
range of transition frequencies. I
Different solvent environments. / \
Doppler shifts, etc. / \ @, = frequency
of particular molecule
Gaussian envelope
® 2

Frequently, distribution is a Gaussian -
probability of finding a molecule at a particular frequency, P,.

1 2 2
. —(w,—wy) 20
P, = W e "0 " standard deviation
normalization —
constant
Then p(t) = I e_(a)h—o)o)z/zo-z

1
plw,,t)dw,
/ 2 =
2T0° —» / \

probability, P, pure density matrix
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Radiation field at @= @, line center
@, >> o — all transitions near resonance

Apply pulse with flip angle &

Calculate < ,u> , transition dipole expectation value.

Following pulse, each sub-ensemble will undergo free precession at @,

() =Tr p(0p

1 7 _(o-
:—2 J‘ e (@, 0)0)2/20'2Tr B(what)ﬁdwh
N27mo” — —

Using result for single frequency @, and flip angle

- \V27o?
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Substituting o = (@, — @),
frequency of a molecule as difference from center frequency (light frequency).
Then w, = (0+w,) and dw,=dé.

With the trig identity: sin(x+ y)=sin(x)cos(y)+ cos(x)sin(y)

(u)=-+ S“”gz l:cos(a)ot) [ e 9727 §in(5t)dS + sin(ay?) [ e 07120 cos(51)dS
- 2no ~ "o

First integral zero; integral of an even function multiplying an odd function.

< ,u> = —usin@sin(w,r)e™" 2V

Oscillation at @ ; decaying amplitude -
Gaussian decay with standard deviation in time - 1/0 (Free Induction Decay)

Phase relationships lost > Coherent Emission Decays

Off-diagonal density matrix elements — coherence; diagonal - magnitude
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<'u> = —H siné Sin(a)ot)e—tz/z(l/a)z

/

flip angle light frequency free induction decay

Decay of oscillating macroscopic dipole.
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