Chapter 12




Absorption and Emission of Radiation:
Time Dependent Perturbation Theory Treatment

Want Hamiltonian for Charged Particle in E & M Field
Need the potential U.

Force on Charged Particle:

. S 1,4 -
F:e[E+E(V><B)}

Force (generalized form in Lagrangian mechanics)
j' component:

F_ oY djou U is the potential
' g, dt 54, g; are coordinates
Example: :
- __0U_d (au J
o ox  dtl 8V,
since:
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Use the two equations for F to find U,
the potential of a charged particle inan E & M field

Once we have U, we can write:

H=H"+H’

Where H' is the time dependent perturbation

Use time dependent perturbation theory.
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Using the Standard Definitions from Maxwell’s Egs.

R t
A = vector potential
¢

= scalar potential

Force on Charged Particle:

Then:

Copyright — Michael D. Fayer, 2018



- -—

VxA é’Ay—aAX

IA,

_9A

(V x

o

IA,

)=

Adding and Subtracting V,

oxX 2y V74

)

O X

o”x\\A

- = = oA
(V xV x A) =V y +VZO/,_AZ+VX5—AX—VX&—V>, é,Ax _VZ é,Ax
x 7Gx IX 70 OX 3y 1
Total time derivative of A, is
dA _dA, v, oA v oA Ry, A,
dt At ox oy o1

e

Due to explicit variation of
A, with time.

N

Due to motion of particle -
Changing position at which A, is evaluated.
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Then:

oA _dA, __, 9A v, A, v, A,
ot dt Y oy o1 X

Using this

Since:
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Substituting these pieces into equation for F,

F =e[_5’¢_£5‘\u1(\7wx/&)x]

cancels

(\7><§>< A)X =i(V -A) 0A, é’A

dt ot

A not function of V &
V, V, independent of V,

0
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Therefore

Since ¢ Is independent of V, can add in.

Goes away when taking 0
oV,
The general definition of F, is:
17 dl 2
F,.=—U+—| —U '
. x dt(a”\/x ) U =» potential

Therefore:

- -

U =e¢—%A-V
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Legrangian:
L=T-U
T = Kinetic Energy

For charged particle in E&M Field:
L=T-eg+ AV
T=3m(ﬁ+y%¢ﬁ

2

The i component of the momentum is give by

° dq
. S (R V)
p = 0”!_ where: op at i
74, 4, =%=V,

Therefore, P, = m>’<+EAX
C
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The classical Hamiltonian:

: I . €
H=PXx+Py+Pz-L (PX=mX+EAx’etC-)
L=T—e¢+%5\~\7

T=%m(>’<2+y2+22)

Therefore
H =(m>’<2 +%AX>’<]+(my2 +%§/Ay)+(m22 +%2AZ)

—%m(k2 +V° +22)—%(>'<AX + YA, +ZAZ)+e¢
This yields:

H =%m(>’<2+ )’/2+22)+e¢
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Want H in terms of momentum P,, P,, P,
since we know how to go from classical momentum to QM operators.

Multiply by m/m

H = ((mX)7 + (my)’ +(m2)°) +eg

2m

Using:

P. =mq, +%Ai then mg, =P, —%Ai

Classical Hamiltonian for a charged particle in any combination of
electric and magnetic fields is:

H = an[(px—EA) +(py—%Ay] +(pz—§Az) }+e¢
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QM Hamiltonian

Make substitution: p, = —ihi
0 X

Then the term:

2 2 2
(pX—EAX) = -’ 4 +e2|AX|2+i@iA +iEA 7

X X

C OX C O X

Same. Pick up
The operator operates on a function, . factor of two
Using the product rule:
he 0 6 X
P A =it Py (418 A, T

OX

2 2 2
(DX—SA) SN A|2+iﬁ—ﬁAX+2iheA

A x* c2| X C X C *ax
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The total QM Hamiltonian in three dimensions is:

2
H= 1 ( )“z2V2+e—2|A|2 Ih—eV Ai2 e R, §J+e¢
2m C C C

This is general for a charged particle in
any combination of electric and magnetic fields

For light = E & M Field

¢=0 (no scalar potential)
And since

V-A+ %% =0  (Lorentz Gauge Condition)
c

Then: o
V-A=0

Weak field approximation: |A|2 IS negligible

Copyright — Michael D. Fayer, 2018



Therefore, for a weak light source

ﬂ=i(—hzvz+2'he2iﬁ)

2m \ C
Kinetic energy of particle

For many particles interacting through a potential V,

add potential term to Hamiltonian.
Combine potential energy term with Kinetic energy term to get normal

many particle Hamiltonian for an atom or molecule.

hZ
H’= —Z T Vi+V Time independent
J

J

The remaining piece is time dependent portion due to light.
’ e .,-»> =
H = _IhAj° Y,—
T m;C
The total Hamiltonian is
H=H"+H’
Use H? + H' in time dependent perturbation calculation.
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E & M Field = Plane wave propagating in z direction (x-polarized light)

unit vectors i = X
=
K=z
) with A=A cos[Zm/(

\ vector potential

t

-]

To see this is E & M plane wave, use Maxwell's equations

E =—£i,&=?2ﬂ—vAgsin Zn'v(t——
c ot C
B=VxA= I%Aﬁstnv(t—%)

Equal amplitude B and E fields,
perpendicular to each other,
propagating along z.

Z

J

<!

p> 1!

i ] k
0 0 O
oX oy 0z
A, 0 O
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To use time dependent perturbation theory we need:

)= (T AR,

(i

¥?)

Dipole Approximation:

Most cases of interest, wavelength of light much larger
than size of atom or molecule part of a cycle

< of light

0
A>2x10°A = 200 nm / . \
/

atom, molecule =1-10A

molecule

Take A, constant spatially -> two particles in different parts of molecule will
experience the same A, at given instant of time.
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Dipole Approximation:

Pull A, out of bracket since it is constant spatially

(s B ) =-EA T (w2 2 90)

—Xj
-iAT v 2

j

7
ENS doesn’t operate on time dependent part of ket, pull
Xi time dependent phase factors out of bracket.

<1P?n(q’t)|ﬂ’|\yg(q’t)>=i%Axei(Em_En)”thi<'/’r?q(Q)|0,,LX

J J j

wa ()

Need to evaluate (v, |0,,LX w)

j

: 7
Can express in terms of x; rather then ——

é’xj
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First for one particle ¥'s can write following equations:

d 2V’ L2m complex conjugate of
1 E. -V =0
@) d x° [ (lyn = Schrodinger equation
d’y’ 2m
(2) ot [E -V (0]pp =0

Left multiply (1) by Xy,
Left multiply (2) by xp®

dzl/lo* 2m 2m
1 Xy ° m "E ——V&)xply? =0
(1) Vi 5z T 7 Xy, - \Xanwm
d’y? L 2m 2m
2 X 0* n OE __V o* O=O
( ) V/m dXZ hz '//ml// h Nm V/n

Subtract
d’y? d’y? 2m
xy? — 0 L X E.—E 0
W, i Y e T W Xy ( h) =
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d’y d’y? 2m
Xl —I M % L xw (E,—E 0
Vo Gy " ¥n g2t W Xy ( n) =
Transpose
2m d l//m o* dZ'//n

hz (E -E )V/m X'/,n = XV/n X'//m

d x? d x?

Integrate

th(E -E, jv/mandx_ j(xv/nd Vo pr?fd W“)dx

/ L dx”

This is what we want. (2| x|y?)

Need to show that it is equal to <y/r?] |0,,ix l//2>

j
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2m T oAy e d l//
E.—E, = n_ oyt Z Y

—00

Integrate right hand side by parts:

d2w™ I udv=uv| - I vdu and collecting terms

dV - X —00 —00
d X2 \

_ [_i(an)dw d (xy/ﬁ*)d—vlg}dx

using product rule%
0

odyw _ dyndyn odyy | dy, dy,
dx dx dx V" dx T dx dx

odw o dyr,) L dy,
I( v, Vo Iw L

2"d and 4t terms cancel

= _Wn

Integrating this by parts = equals second term
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Therefore, finally, we have:
d m
(wn |d_x _?(Em —~E,)(wn|x

This can be generalized to more then one particle by summing over x;.

W)= w)

Substituting into
1

(¥%,(q.0)|[H | ¥2(q.1))= i%Axe“Em‘En)“”Ej:m—j<vfﬁ (Q)|0,,ixj wa(a))
gives
<‘an (q,t)‘ﬂ' “Pﬂ(q,t)> =—i éAX(Em —E,)x, g!En-Ent/h
with:
Xion = <‘//r?1 ‘ezj:lj V/r?> Operator — (charge x length) - dipole

X-component of ""transition dipole."
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Absorption & Emission Transition Probabilities

dC, Equations of motion

= _%zn:cn (¥°,(a,0)|H'[¥%(a.1) of coefficients

Time Dependent Perturbation Theory:
Take system to be in state ‘\Ifﬂ(q,t)> att=0
C.=1 C, =0
Shorttime > C._ =0

Using result for E&M plane wave:

dc, =_LZA (E,—E,)x g/ (En=En)t/ No longer coupled equations.
dt Ch X m n mn

0
an = <'//m ‘eZEj
J

l//r?> Transition dipole bracket.
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For light of frequency v

A = A cos(2zvt) vector potential

=%A)(()(ei2m/t +e—i27rvt)

Therefore: note sign difference

YN

- 2 A)? Xmn ( Em - En)(ei(Em_En+hv)t/h + ei(Em_En_hv)t/h)
dt 2Ch

dc, 1
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Multiplying through by dt, integrating and
choosing constant of integration such that C  =0att=20

note sign differences

L p _
Cm_ZChAmen(Em En)

ei(Em—En+hv)t/h _1 ei(Em—En—hv)t/h _1i|

(E,-E,+hv) ¥ (E,-E,—hwv)
t

Rotating Wave Approximation

Consider Absorption E,, > E,

A Em This term large, keep.
Drop first term.

E

n

(E,-E,-hy=>0 as hv—(E,-E,)= denominator goes to 0
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For Absorption — Second Term Large = Drop First Term
Then,
Probability of finding system in “I’?n> as a function of frequency, v=> C,C,
Using the trig identities:
(eiX —l)(e‘iX —1) = 2(1-cos x) =4sin® x/2

Get:

2h
[(E.—E,—)]

Sinz[(Em ~-E, - hv)t]

X

m~’m _Czhz

E.—E,=E energy difference between two eigenkets of H°

AE = E —-hy amount radiation field is off resonance.
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E.—E,=E energy difference between two eigenkets of H°
AE = E-hv amount radiation field is off resonance.

A

Plot of C"C,,, vs AE:

ny?
Maximum at AE=0
0\
|<—4nh/t—>|
< AE >
2 t = nfix, F(E, -E,)
| mmaX=Q(2h)2 Q_CZhZ X an|( m n)

Maximum probability o« t 2— square of time light is applied.

Probability only significant for width ~4rh/t 1ps=>67cmt

Determined by uncertainty principle. For square pulse: AvAt = 0.886
1 ps = 30 cm* from uncertainty relation
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The shape is a square of zeroth order spherical Bessel function.

tincreases =  Height of central lobe increases, width decreases.
Most probability in central lobe

10 ns pulse > Width ~0.03cmL, virtually all probability

t>wo > C,C, & Diracdelta function JAE=0); hv=(E_-E,)

Total Probability = Area under curve
sin®(AEt/2h)

Q7
CCdA = CCdAE— dAE
I - I L (AEY’
sin’ X 4 _ L aoBy Ple eV
h Zh'[ d x Q_ Czhz‘Ax mn| (Em En)
_Qt Probability linearly proportional to

4h’ time light is applied.
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Since virtually all probability at AE =0,

2

AO

evaluate

(in Q) at frequency (E,—-E.)/h=v_,

Related to intensity of light
2,2 / as shown below.

Cr.Cop = Zm | A2 (v, Y X

m=m CZhZ
1

transition dipole bracket

Therefore:

Probability increases linearly in t.

Can’tlet C_C_ get too big if time dependent perturbation theory used.

Limited by excited state lifetime.

Must use other methods for high power, “non-linear” experiments (Chapter 14).
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Have result in terms of vector potential, A’.
Want in terms of intensity, 1.

Poynting vector:

—»_L—» -
S—4EE>< B
For plane wave:
S-i C An°V’ | nof2 o2
=k & A,| sin“2zv(t—1z/c)

Intensity = time average magnitude of Poynting vector
Average sin? term over t from 0 to 2x > 1/2

Therefore:

2
2
l, ="|A]
2C
and 27T 2 - . .
CC =—>1_[x ‘ t Linear in intensity.
mom X - mn Linear in time.

Ch
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This is the big result.

t Linear in intensity.
Linear in time.

C'C. =27

2
mm_ChZX ‘

X

mn

X = <m m n> Transition dipole bracket for x polarized light.

Can have light with polarizations x, y, or z, 1. e., I, I, I,

Then:
. 27T 2 2 2
CmCm = ChZ I:Ix an| + Iy|ymn| + Iz Zmn| :It
X Yoo @Nd Z_are the transition dipole brackets for

light polarized along x, y, and z, respectively
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Another definition of “strength” of radiation fields

radiation density: / average

1
p(vmn)= 4 EZ(an)
T

2_,2

E (o) = | A, )

Then
2

‘AO(an)2=73VCZ ,O(an)
Isotropic radiation

2 2 2 1

AL Van)| = A (V)| =[ A (V)| =5 |A" (Vi)

For isotropic radiation

2
3;:2 {|an|2 '|'|ymn|2 +|Zmn|2}p(vmn)t

C'C, =

2
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Einstein “B Coefficients” for absorption and stimulated emission

Probability of transition taking place in unit time (absorption)
for isotropic radiation

27

7 ol PVin)

Bn—>mp(vmn) =

where

|lumn|2 = |an|2 + | ymn|2 + |Zmn|2

T

transition dipole bracket
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For emission (induced, stimulated) everything is the same except
keep first exponential term in expression for probability amplitude.

E, stimulated emission
need radiation field

Previously, initial state called n.

\ 4 En ) ) ) )
Now Initial state m, final state n.
E.,>E,
- i(E,—En+hv)t/a _ i(En—En—hv)t/a _
Co = A%, (En—En )| L8 L
2ch (E,-E,+hv) (E,-E,-hv)

T~

Rotating wave approximation. Keep this term.

B.nP(Vin) = BsnP(Vin)

Einstein B coefficient for absorption
equals B coefficient for stimulated emission.
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Restrictions on treatment

ok

Left out spontaneous emission
Treatment only for weak fields

Only for dipole transition

Treatment appliesonly for C'C_«1
If transition dipole brackets all zero

| £on| =0

Higher order terms lost when we took vector potential
constant spatially over molecule:
Lose = Magnetic dipole transition

Electric Quadrupole

Magnetic Quadrupole

Electric Octapole

etc...
Only important if dipole term vanishes.
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Einstein “A coefficient” — Spontaneous Emission

/Bm—m , Boom Einstein B Coefficients
md_uc_ed absorption
emission

Want: A, spontaneousemission coefficient

N, = number of systems (molecules) in state of energy E_, (upper state)

N, = number of systems (molecules) in state of energy E_, (lower state)

At temp T, Boltzmann law gives:

—E_/KgT
N, _E — oMW keT
N, g En/kel
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At equilibrium:

rate of downward transitions = rate of upward transitions

N m { Am—»n + Bm—>n p(vmn )} =N n Bn—»mp(vmn)

spontaneous emission  stimulated emission absorption
—E/kgT
USlng Nm —_ e ’ —_— e_hvmn/kBT
Nn — e—En/kBT —
e—thn/kBT — Bnamp(vmn)
Am—m + Bm—)n p(vmn)

Solving for p(v,..)

—hv, /T kgT
__ ALETTE
P(an ) _ —hvmn /kgT
_Bm—me + Bn—)m
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Then: Am—m
B

m—n

,O(an) = e hvmn/kgT

Take “sample” to be black body, reasonable approximation.

Planck’s derivation (first QM problem)

87 hV 1
PVin) =
c’ e —
Gives A = 87 hvmn
c?
327°y
Am—>n _ 3C3h ‘:umn‘

Spontaneous emission — no light necessary,
| =0, v3 dependence.
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Spontaneous Emission:

v 3 dependence

No spontaneous emission - NMR
v =108 Hz

Optical spontaneous emission

v =210 Hz

Typical optical spontaneous emission time, 10 ns (108 s).

3 g 3
v NMR — 1015 — 10—21
|4 optical 10
NMR spontaneous emission time — 1013 s (>10° years).

Actually longer, magnetic dipole transition much weaker than
optical electric dipole transition.
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Quantum Treatment of Spontaneous Emission (Briefly)

Radiation Field = Photons

State of field |n
| > same as Harmonic Oscillator kets

Number operator
a*a|n)=n|n)

number of photons in field

=Jn[n-1)

Absorption:

e aln)

annihilation operator

Removes photon — probability proportional to bracket squared
oc N oc INtensity
need photons for absorption
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Emission

/ one more photon in field
a'ln)=vn+1n+1

creation operator

Probabilityccn + 1
when n very large n >> 1, n o« Intensity

However, for
n=0 a*[0) = 1[1)

Still can have emission from excited state in absence of radiation field.

QM E-field operator:

E; =i(ha. /26N )¢, {gg exp(—im;t+ik-T) - a% exp(io;t + iE-r)}

Even when no photons, E-field not zero. Vacuum state. All frequencies have
E-fields. “Fluctuations of vacuum state.”

Fourier component at AE =A@ induces spontaneous emission.
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