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A detailed theoretical treatment of donor-acceptor photoinduced forward electron transfer and back transfer
(geminate recombination) for molecules diffusing on a micelle surface is presented. Expressions are given
for the time-dependent survival probabilities of both the excited-state donor and the charge-transfer state
formed by forward electron transfer. Incorporation of diffusion has a pronounced effect on the kinetics of
both the forward and the back transfer, and the amount of geminate recombination depends critically on the
Coulombic potential between the ions. Ion spatial distributions as a function of time are presented and used
to discuss the possibility of achieving long-term ion separation. The validity of the theory is demonstrated
by comparison to Monte Carlo simulations of the problem, and the perfect agreement obtained confirms the
accuracy of the theoretical derivation.

I. Introduction

The investigation of reaction dynamics in restricted geom-
etries such as micelles, zeolites, emulsions, and thin films has
been the subject of a great deal of recent experimental and
theoretical work.1-6 The unique spatial arrangement of such
systems can give rise to novel chemical behavior in which the
dynamics of a given process are sharply influenced by the
system topography. It is hoped that research aimed at under-
standing the relationship between system geometry and reaction
rates will ultimately lead to an ability to control the kinetics by
manipulating the microscopic environment. Progress in this area
has already been observed in the field of catalysis.7-11

An important example of reaction dynamics in restricted
geometries is that of photoinduced electron transfer. Ions
formed by electron transfer from a photoexcited donor molecule
experience a thermodynamic driving force that tends to cause
them to recombine, with no net chemical reaction. The interest
in electron transfer in restricted geometries stems from the
recognition that controlling the topography of the system may
hinder the back-transfer reaction, thereby promoting ion separa-
tion and potential energy storage. The ability of system
geometry to influence the kinetics of both forward and back
electron transfer is amply illustrated by photosynthesis, where
a precise spatial arrangement of electron donors and acceptors
provides efficient charge separation.12,13

Recent work on electron-transfer systems has tended to fall
loosely into one of two categories. In the first, inter- or
intramolecular electron-transfer systems are designed with a
single, fixed separation distance between the donor and acceptor.
By varying the separation distance, the nature of the separating
medium, and the character of the donors and acceptors
themselves, valuable information about the reaction rate is
obtained.14-21 More recently, however, there has been interest
in a second category of intermolecular electron-transfer
systems.22-34 For systems of this type, a number of acceptors
may exist in a complicated spatial array about the donor. In
such circumstances, there is no longer one characteristic distance
for the problem, but electron transfer can occur through solvent
to any of a number of acceptors. Determining which acceptor
receives the electron requires a detailed knowledge of the full

distance dependence of the electron-transfer rate. Moreover,
the back-transfer process is coupled to the forward transfer in
a complex fashion. A macroscopic system will consist of an
ensemble of possible donors, each surrounded by its own unique
configuration of acceptors. Where the ions are formed is
determined by the distribution of forward-transfer pathways. The
back-transfer dynamics, then, depend on the spatial distribution
of ions formed by the forward transfer, and the survival time
of the ions is thus coupled to the forward-transfer kinetics in a
nontrivial way. The complexities of the ensemble averaging
techniques involved in handling a problem of this sort have led
to various approximations to simplify the full spatial dependence
of the back-transfer process.32,35,36 Many of these approxima-
tions have been shown to be highly inaccurate at anything other
than very low acceptor concentrations.37,38

Recently, a rigorous theoretical treatment has been developed
for photoinduced electron transfer in isotropic three dimen-
sions.24,29,30,39,40 The theory properly performs the full set of
ensemble averages for both the forward- and back-electron-
transfer processes and permits calculation of the time-dependent
survival probabilities of the excited-state donor and the ions
formed by electron transfer. This theoretical treatment has been
extended to describe electron transfer in liquids where the
diffusion of donors and acceptors dramatically affects the
kinetics of the forward- and back-transfer reactions.24,29,30,40

For electron transfer in a restricted geometry, the static
problem has recently been solved.38 In this article, we extend
this treatment to include the effects of diffusion. Specifically,
we concentrate on photoinduced electron transfer occurring on
a micelle surface where the particles are free to diffuse over
the surface of the micelle. This problem is of interest for two
reasons. First, this is the first complete description of forward
and back electron transfer between a donor and a number of
competing acceptors in a restricted geometry where diffusion
of the particles is included. We note that the results are
particularly relevant for the analysis of experimental data. For
example, recent experiments have studied electronic excitation
transport among chromophores on micelles.41,42 Analogous
experiments could be performed for chromophores that undergo
electron transfer, and the results will depend critically on
whether the chromophores diffuse significantly on the time scale
of the electron-transfer events. Importantly, experimentalX Abstract published inAdVance ACS Abstracts,February 1, 1996.
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measurements of diffusion constants for chromophores in
micelles have shown that these diffusion constants can be
significant.42 The second reason for the usefulness of this work
is that, although this paper is concerned with electron transfer,
the methods developed here to treat diffusion in the restricted
geometry of a micelle surface can be extended to include other
types of reactions in other geometries, albeit with varying levels
of mathematical complexity.
The theoretical methods presented here involve sets of

ensemble averages over all possible configurations of acceptors
about the donor. To verify the accuracy of the theory, we also
report Monte Carlo simulations of electron transfer on the
surface of a micelle. Diffusion of the particles over the surface
of the micelle is included in the Monte Carlo simulations, and
comparisons of the simulation and theoretical results show
perfect agreement.

II. The Model

A detailed description of the electron-transfer system model
has been given elsewhere.23,38,43 In brief, following photo-
excitation, an excited electron donor can either relax to the
ground state or can transfer an electron to one of the available
surrounding acceptors. The electron-transfer process will result
in the formation of radical ions, with charges determined by
their initial pretransfer charges. An initially neutral donor and
acceptor will result in the formation of a cation and anion which
will experience a strong Coulombic attraction. In a diffusing
system, the Coulombic attraction will significantly affect the
charge-recombination dynamics. Analogously, a neutral donor
with a positively charged acceptor or a neutral donor with a
doubly positive acceptor will give rise to ions that experience
no Coulombic interaction or a repulsive one, respectively. Note
that for the three cases just mentioned, there is no Coulombic
interaction between the donors and acceptors prior to the
forward-transfer event. In such cases, the initial distribution
of acceptors about the donor can be assumed to be random.
Although more complicated initial distributions can be readily
included in the theory, here we consider only random starting
configurations in order to simplify the analysis. Following the
forward-transfer event, the ions created can either back-transfer,
thereby regenerating the ground state, or undergo diffusive
motion that (perhaps aided by Coulombic repulsion) can result
in long-term ion separation. In this model, following forward
electron transfer, further electron transfer is only geminate,
returning the electron to the original donor. The possibility of
the electron hopping from one acceptor to another is excluded.
This is physically reasonable for many systems, as has been
discussed recently,43 since there is no thermodynamic driving
force for acceptor-acceptor transfer, while geminate recombi-
nation is usually substantially downhill. However, this is an
approximation, and in some systems, acceptor-acceptor electron
hopping could play a role that is not included in the model.
The restricted geometry system modeled here is one in which

electron transfer occurs between particles constrained to lie on
the surface of a micelle. The micelle is modeled as a sphere of
radiusR, and the donor and acceptors are taken to be curved
disks on the surface of the sphere, with curvature matching that
of the micelle. (See Figure 1.) The coordinate frame is chosen
so that the donor is always at the north pole, with the donor-
acceptor distance given by the polar angleθ. Diffusion of the
donor and acceptors over the surface of the micelle is permitted
and is characterized by the relative diffusion constant,D ) Dd

+ Da, whereDd andDa are the lateral diffusion constants of
the donor and acceptor, respectively. For a many-body problem,
a coordinate transform of this type is not exact, since the motion

of the particles is coupled by virtue of the fact that motion of
the donor toward any one acceptor necessarily implies motion
away from some other acceptor in the system. Treating the
diffusion of the particles by the relative diffusion constantD )
Dd + Da, however, has been shown to be essentially perfect.43

The concentration of electron donors is much less than that
of the acceptors. For sufficiently low donor concentrations, on
average, only one donor will exist on the surface of any given
micelle, and this donor may transfer to any of theN acceptors
on the same micelle. (See Figure 1.) The relevant electron-
transfer distance is the through-sphere, or chord, distance. The
micelle concentration is taken to be low so that Fo¨rster energy
transfer between donors on two different micelles is insignificant
and so that electron transfer between a donor on one micelle
and an acceptor on another does not occur. In accordance with
experimental evidence,42 the diffusion of the micelles themselves
is much slower than that of the donors and acceptors so that
the micelle can be taken to be static on the time scale of the
relevant electron-transfer events.
The set of assumptions given above, although they simplify

the problem, are nevertheless experimentally realistic. Given
the often steep distance dependence of the forward reaction,
electron transfer between donors and acceptors will be the
dominant kinetic event, as the low-concentration donors transfer
to the surrounding, much higher concentration of acceptors. Real
molecules will have finite sizes that influence the transfer
kinetics. The primary effect is that of donor-acceptor excluded
volume, since the donor and acceptor cannot approach closer
than the sum of their radii. This is readily included in the theory
by incorporating a cutoff in the spatial integrals. The role of
acceptor-acceptor excluded volume is more subtle and has been
shown to be insignificant at all but the highest acceptor
concentrations.38,44

III. Theory

A. Forward Transfer. The theoretical quantities of interest
are the survival probabilities of the excited donor and the charge-
transfer products,〈Pex(t)〉 and 〈Pct(t)〉, where 〈Pex(t)〉 is the
probability that a donor excited at timet ) 0 is still excited at
some later timet and〈Pct(t)〉 is the probability that an ion formed
by charge transfer still exists at timet. The brackets denote
that the survival probabilities are the ensemble averaged ones.
The starting point in the derivation is writing the differential
equations for the special case of one donor and only one
acceptor. For the forward transfer, the relevant equation is

Figure 1. Pictorial representation of the micelle system along with
the coordinate frame used in section III. The donor and acceptors exist
as curved disks on the surface of the micelle, with radius of curvature
matching that of the micelle. (Donor shown as the unfilled disk and
acceptors as solid-filled disks.) The relevant electron-transfer distance
is the through-sphere distance or chord length,r, related to the angular
distanceθ by r ) 2R sin(θ/2).

∂

∂t
Sex(t|θ0) ) D∇θ0

2Sex(t|θ0) - kf(θ0)Sex(t|θ0) (1)
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Here,Sex(t|θ0) is the probability that, if the donor is excited at
t ) 0 with the acceptor located atθ0, then the donor is still
excited at some later timet. Note that during this time interval,
the acceptor may have diffused to some other position in the
system. ∇θ0

2 is the relevant component of the LaPlacian for
motion along the surface of a sphere. Examination of Figure 1
shows that the donor-acceptor distance is completely character-
ized by the angleθ0, and thus, only the polar component of the
LaPlacian is needed. This is

whereR is the micelle radius andθ0 is the acceptor’s initial
position in a coordinate system with the donor at the north pole.
In eq 1,kf(θ0) is the rate constant for the forward-transfer process
and depends on the distance between the donor and acceptor
(θ0). The distance dependence of the rate constant can be of
any form, but here we assume the widely-accepted Marcus form:
45,46

where

λ ) e2

2( 1εop - 1
εs)(1rd + 1

ra
- 1
Rsin(θ0/2))

Here, εop and εs are the high-frequency and static dielectric
constants, respectively, which may vary directionally inside and
along the micelle.rd andra are the half-arc length of the donor
and acceptor, respectively, ande is the unit of fundamental
charge. In eq 3,∆Gf is the free-energy change due to the
forward transfer,θc is the donor-acceptor contact distance in
angular units, andp and kB are the usual Planck’s and
Boltzmann’s constants.Jof andâf are parameters that character-
ize the magnitude and distance scale of the transfer process.
Note that although the relevant electron-transfer distance is the
through-sphere distancer, the rate constant is expressed in terms
of the angular donor-acceptor separation distance for consis-
tency with eqs 1 and 2. The two quantities are related byr )
2R sin(θ0/2). The reason that the initial coordinateθ0 appears
in eqs 1-3 is that the differential equation forSex(t|θ0) is
formally derived by taking the adjoint of the full Green’s
function for the problem.24,39 Equation 1 has associated initial
and boundary conditions given by

Equation 5 is a reflecting boundary condition at the contact
distance between the donor and acceptor,θc.
The excited-state survival probability when allN acceptors

are present is given by

If eq 6 is integrated first over allθj and then over allθj0, it can
be shown that24,39,40

In eq 7,θc is the donor-acceptor angular contact distance,N
is the number of acceptors, and the subscript has been dropped
for convenience. Note that in a restricted geometry problem
of this type, the number of acceptorsN is finite, and the
thermodynamic limit of (7) cannot be taken. Equation 7 is
written in the absence of donor excited-state fluorescence to
emphasize the kinetics of the electron-transfer process. Excited-
state donor fluorescence decay would appear as a multiplicative
factor exp(-t/τ) in eq 7, whereτ is the excited-state lifetime.
Equation 1 forSex(t|θ0) cannot be solved analytically, and

numerical evaluation ofSex(t|θ0) must be followed by numerical
integration as indicated in eq 7 to give〈Pex(t)〉.
B. Back Transfer (Forward Transfer with Geminate

Recombination). Solving for the charge-transfer ion survival
probability, 〈Pct(t)〉, is substantially more difficult because the
kinetics of the back transfer are coupled to those of the forward.
The survival probability for the case of one donor and one
acceptor is written in a manner analogous to the forward-transfer
problem:

Here,Sct(t|θ0) is the probability of finding the donor in its ion
(charge transfer) state at timet, given that the acceptor was
initially located atθ0. L*θ0 is the adjoint of the Smoluchowski
operator which includes the potential between the ions and is
given by23,47

whereV(θ0) is the Coulombic potential between donor and
acceptor ions separated by angular distanceθ0. kb(θ0) is the
rate constant for the back-transfer process and is given by eq 3,
only with Jof, âf, and∆Gf replaced byJob, âb, and∆Gb, the
relevant parameters for the back transfer. The charge transfer
survival probability for any given configuration of allN
acceptors is given by

wherePct
i (θ1...θN,t|θ01...θ0N) is the probability that, at timet,

the ith acceptor has the electron with theN acceptors located at
θ1...θN for the initial configurationθ01...θ0N. A technique for
solving for 〈Pct(t)〉 was developed by Linet al.24,39,40 and
involves first ensemble averaging eq 12 over the coordinates
of theN - 1 acceptors without the electron. We quote only
the end result from following an analogous procedure for the
micelle case:

∇θ0
2 ) 1

Rsinθ0

∂

∂θ0
[sinθ0

R
∂

∂θ0
] (2)

kf(θ0) ) 2π
p
Jof

2 exp[-2Râf(sin(θ0/2)-

sin(θc/2))]
1

x4πλkBT
exp[-(∆Gf + λ)2

4λkBT ] (3)

Sex(0|θ0) ) 1 (4)

∂

∂θ0
Sex(t|θ0)|θ0dθc

) 0 (5)

∂

∂t
Pex(θ1...θN,t|θ01...θ0N) )

∑
j)1

N

[D∇θj
2 - kf(θj)]Pex(θ1...θN,t|θ01...θ0N) (6)

〈Pex(t)〉 ) [∫θcπSex(t|θ)sinθ
2

dθ]N (7)

∂

∂t
Sct(t|θ0) ) L*θ0Sct(t|θ0) - kb(θ0)Sct(t|θ0) (8)

Sct(0|θ0) ) 1 (9)

∂

∂θ0
Sct(t|θ0)|θ0dθc

) 0 (10)

L*θ0 ) D
Rsinθ0

eV(θ0)
∂

∂θ0

sinθo

R
e-V(θ0) ∂

∂θ0
(11)

∂

∂t
Pct
i (θ1...θN,t|θ01...θ0N) ) ∑

j)1

N

Lθj
Pct
i (θ1...θN,t|θ01...θ0N) -

kb(θi)Pct
i (θ1...θN,t|θ01...θN) + kf(θi)Pct

i (θ1...θN,t|θ01...θ0N)
(12)

〈Pct(t)〉 ) N∫θcπ∫0tSct(t - t′|θ0)kf(θ0)Sex(t′|θ0) ×

[∫θcπSex(t′|θ0)
sinθ0

2
dθ0]N-1

dt′
sinθ0

2
dθ0 (13)
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Equation 13 deviates from previously reported results for ion
survival probabilities in infinite liquid systems22 in two respects.
First, the spatial averaging must be appropriate for the restricted
geometry. For particles on the surface of a micelle, the
appropriate spatial distribution for the probability of finding a
particle atθ0 is 1/2 sinθ0 dθ0.38,48 Second, the term in brackets
in eq 13 does not appear in the analogous equation for infinite
liquid systems. In infinite systems, the bracketed term in eq
13 becomes simply〈Pex(t)〉 in the thermodynamic limit. For
the micelle problem, the thermodynamic limit of eq 13 cannot
be taken because of the finite number of acceptors in the
restricted geometry.

IV. Numerical Methods and Monte Carlo Simulations

Equations 1 and 8 given above were solved numerically using
the Crank-Nicholson algorithm49 and a partial differencing
scheme suggested by Agmonet al.50,51 〈Pex(t)〉 and〈Pct(t)〉 were
then calculated from eqs 7 and 13 via numerical integration.
We wish to stress that obtaining convergence in the solutions
of 1 and 8 can be extremely difficult. However, for the vast
majority of parameters, step sizes of 0.005 ns in time and 0.002
rad in space proved sufficient.
The full details of the Monte Carlo simulations have appeared

elsewhere.38,44 In brief, a random configuration ofN acceptors
about a donor was generated appropriately.38,48 TheN acceptors
were then allowed to diffuse, with each acceptor stepping a
distance ofx4D∆t, whereD ) Dd + Da is the sum of the
donor and acceptor diffusion constants and∆t is the simulation
time step. A step size ofx4D∆t is the result from diffusion in
an infinite plane, but for sufficiently small times steps, it is the
limiting behavior for diffusion on a sphere. After each time
step in the simulation, the probability of forward transfer was
calculated from 1- exp[-(Σjkf(θj)∆t)]. If forward transfer
occurred, then the acceptor receiving the electron was deter-
mined, with the probability of theith acceptor becoming the
ion given bykf(θi)/Σjkf(θj).43 Following forward transfer, the
back transfer was simulated by following the motion of the
acceptor with the electron. (For the problem in the absence of
acceptor-acceptor excluded volume, the otherN- 1 acceptors
do not influence the back-transfer event.) The acceptor with
the electron was moved in the appropriate Coulomb potential
according to standard Metropolis Monte Carlo techniques,52,53

and the probability of back transfer after each diffusion step
was calculated as 1- exp[-kb(θ)∆t], whereθ is the angular
distance between the donor and acceptor ions at that time step.
All numerical integration and computer Monte Carlo simula-

tions were performed on an IBM RS6000 Model 3BT work-
station. Theoretical calculations of the observables〈Pex(t)〉 and
〈Pct(t)〉 from eqs 1, 7, 8, and 13 took between several seconds
and a few minutes, while the Monte Carlo simulations required
5-12 h. Hence, the theoretical results presented here represent
a tremendous gain in computational efficiency over the simula-
tions.

V. Results and Discussion

Figures 2 and 3 present, respectively,〈Pex(t)〉 (excited-state
ensemble averaged survival probability) and〈Pct(t)〉 (charge-
transfer-state ensemble averaged survival probability) curves for
a variety of electron-transfer parameters. The parameters are
given in the figure captions and were chosen to give rate
constants with a range of magnitudes and distance dependences.
J and â values were selected to correspond with parameters
reported in experimental studies of intermolecular electron
transfer.26,33 Free-energy values are consistent with what might

Figure 2. Theoretical and simulated〈Pex(t)〉 curves for three different
parameter sets. The open circles are the Monte Carlo simulation results,
and the solid lines are the theory. A shows the〈Pex(t)〉 curves for a
diffusion constant of 10 Å2/ns, while C shows these same curves for
the static problem (D ) 0). The center panel, B, gives the rate constants
as a function of chord distance,r. The numbering of the curves is
consistent in all the panels and corresponds to the three parameter sets
as follows. Parameter set 1:Jf ) 20 cm-1, âf ) 0.7 Å-1, ∆Gf ) -0.5
eV, Jb ) 600 cm-1, âb ) 1.1 Å-1, ∆Gb ) -2.0 eV. Parameter set 2:
Jf ) 40 cm-1, âf ) 1.0 Å-1, ∆Gf ) -1.0 eV,Jb ) 100 cm-1, âb ) 1.0
Å-1, ∆Gb ) -1.5 eV. Parameter set 3:Jf ) 240 cm-1, âf ) 1.1 Å-1,
∆Gf ) -1.5 eV,Jb ) 20 cm-1, âb ) 0.7 Å-1, ∆Gb ) -1.0 eV. All
curves were calculated for nine acceptors on a 20-Å radius micelle
with a donor-acceptor contact distance of 8 Å and optical and static
dielectric constants of 2.0 and 10.0, respectively. The〈Pex(t)〉 curves
in A and C are shown without donor fluorescence decay in order to
emphasize the electron-transfer event. Insets show the short-time
behavior.
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be expected from solutions of the Rehm-Weller equation for
aromatic molecules, using visible excitation and typical elec-
trochemical data.54,55 Figures 2 and 3 show both theoretical
and simulated results, with the simulation given by open circles
and the theory by solid lines. As can be seen, the agreement is
perfect, confirming the validity of eqs 7 and 13. Theory and
Monte Carlo simulations have been compared for a wide variety
of electron-transfer parameters, diffusion constants, Onsager
lengths, and acceptor numbers. In all cases, excellent agreement
was obtained. This is the first time that forward electron transfer
with geminate recombination has been treated for molecules
diffusing in a restricted geometry, finite volume system. While
these results are for the spherical micelle problem, the method
used to obtain them is general and can be applied to any
restricted geometry system.
The panels in Figure 2 show how the amount of forward

transfer depends critically on both the magnitude and distance
dependence of the forward-transfer rate. The center panel
(Figure 2B) shows the rate constantskf(r) for the three curves
plotted against chord length in Å for ease of discussion. The
top panel (2A) shows the〈Pex(t)〉 curves for a diffusion constant
of 10 Å2/ns, while the bottom panel (2C) shows these same
〈Pex(t)〉 curves in the absence of diffusion. Of the three curves
(labeled 1, 2, and 3 to correspond to the different parameter
sets 1, 2, and 3 given in the caption), only curve 3 has a∆G
value sufficiently negative to put itskf(r) in the Marcus inverted
regime. Whereas plots ofkf(r) for curves 1 and 2 show a more-
or-less exponential decay with distance,kf(r) for curve 3 is bell
shaped, with a maximum that occurs 2 Å beyond the contact
length. As Figure 2A shows, it is this invertedkf(r) that leads
to the greatest amount of forward electron transfer. This result
is unexpected, sincekf(r) for parameter set 2 is substantially
larger thankf(r) for parameter set 3 at all short distances. It is
only at distances beyond about 11.5 Å that the inverted rate
constant becomes greater than the noninverted one. (Compare
curves 2 and 3 in Figure 2B). This result can be explained as
follows. For distances from contact out to 11.5 Å,kf(r) for
parameter set 2 has values ranging from 175 to 15 ns-1, while
the invertedkf(r) magnitude is everywhere less than 20 ns-1. A
value of 20 ns-1, however, still results in large amounts of
electron transfer. In fact, ifkf(r) for curve 2 were artificially

capped at 20 ns-1, the resulting〈Pex(t)〉 curve would look nearly
identical to the〈Pex(t)〉 curve for the full (very large) form of
the rate constant. This indicates that, for this particular micelle
size and number of acceptors, a rate constant of 20 ns-1 is
sufficient to essentially ensure forward electron transfer from
any donor that has an acceptor available within the first few
angstroms. The difference between〈Pex(t)〉 curves 2 and 3, then,
is caused by those subensembles of donors that donot have an
acceptor available within the first few angstroms. For these
subensembles, the probability of forward transfer will be greater
for the inverted parameters. This fact, combined with the greater
availability of acceptors at larger distances, causes〈Pex(t)〉 curve
3 to decay faster than〈Pex(t)〉 curve 2.
Figure 2C shows〈Pex(t)〉 curves for the same forward-transfer

parameters but calculated in the absence of diffusion. There
are two points to note. First, the ability of acceptors to diffuse
over the surface of the micelle leads to a substantial increase in
the amount of forward transfer. Second, the differences between
curves 1-3 are accentuated in the static problem. From the
plot of rate constants in Figure 2B, it is seen thatkf(r) for
parameter set 3 becomes greater than the rate constants for
parameter sets 1 and 2 at around 11.5 Å. As discussed, the
fast decay of〈Pex(t)〉 curve 3 is due to additional electron transfer
to acceptors at these large distances. When diffusion of the
acceptors can occur, however, the advantage gained by a donor
able to transfer to large distances becomes less significant, since
acceptors can move in toward a region of higher reactivity.
The〈Pct(t)〉 curves shown in Figure 3 result from the complex

coupling between the forward- and back-transfer processes.
Since〈Pex(t)〉 for curve 3 decays fastest, the overall number of
ions formed must be greatest for this set of parameters.
However, the〈Pct(t)〉 curve corresponding to these forward-
transfer parameters decays fastest and is lowest in magnitude
because the back-transfer rate is fast at almost every distance
where forward transfer is significant. To survive any length of
time, an ion would need to diffuse out of the spatial region
wherekb(r) is large. For a diffusion constant of 10 Å2/ns, few
ions succeed in doing this. Curve 1 in Figure 3 is the only one
in which a large fraction of the ions formed by forward transfer
survives. This is primarily because the∆G value for the back
transfer is so negative (∆G ) 2.0) and the back transfer is so
steeply inverted thatkb(r) is extremely small at all distances.
Although this is consistent with the predictions of classical
Marcus theory, we note that, for very large negative∆G values,
classical Marcus theory may require quantum mechanical
corrections to account for the presence of additional reaction
pathways, i.e., tunneling.17,19,20

The curves shown in Figures 2 and 3 are for representative
parameters. Different parameter sets can lead to different types
of observed behavior, especially in the back transfer. The
observed results depend in a complex way on the details of the
distance dependence.
Figure 4 shows the pronounced effect of diffusion on the

forward- and back-electron-transfer processes. The excited-state
and charge-transfer-state (ion) survival probabilities were
calculated in the absence of diffusion and then compared to
those forD ) 10, 20, and 30 Å2/ns. Experimental measure-
ments of the diffusion constant of octadecylrhodamine B and
merocyanine 540 in Triton X-100 resulted in numbers in this
range.42 For all parameter sets studied, diffusion led to a
dramatic increase in the amount of forward transfer, since
acceptors that begin removed from the donor can diffuse in and
react. Of course, acceptors that are close to the donor can
diffuse out of the region of forward transfer, but for any
reasonably fast set of forward-transfer parameters, acceptors

Figure 3. Theoretical and simulated charge-transfer survival probability
〈Pct(t)〉 curves for the three parameter sets given in the caption to Figure
2. The circles are the Monte Carlo simulations, and the lines are the
theory. All three curves are calculated for an Onsager length of 0,
i.e., for no Coulombic potential between the donor and acceptor ions,
and donor fluorescence lifetime is not included. As for the〈Pex(t)〉
curves in Figure 2, agreement between theory and simulation is perfect.
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“escaping” from the reacting region are outnumbered by
acceptors diffusing in and reacting. Note that because of the
generally steep distance dependence of thekf(r) curves, diffusion
over even a small distance can result in a dramatic change in
the electron-transfer rate.
Diffusion also significantly affects the〈Pct(t)〉 curves, as seen

in Figure 4B. However, the effects are more complex. Because
the back-transfer process depends critically on the ion distribu-
tion created by forward transfer, the ion survival probability is
determined by the interplay between the initial ion distribution,
the ion diffusion constant, and the form of the back-transfer
rate. For the parameter sets shown in Figure 4B, diffusion of
the ions leads to an enhanced escape probability. This, however,
is not general, and for different parameter sets, diffusion may
actually lead to a decrease in the ion survival probability. This
is commonly observed when the back transfer is inverted so
that the back-transfer rate is peaked several angstroms out from
contact. Forward transfer can then create an initial distribution
of ions centered about a region where the back-transfer rate is

slow. Diffusion causes the ions to move into regions where
the back transfer is fast.
Figures 3 and 4 were calculated forrc ) 0, i.e., for no

Coulombic interaction between the ions. However, the charge-
transfer-state survival probability depends greatly on the nature
of the potential between the products of the forward transfer.
Figure 5 illustrates the effects of attraction, repulsion, and no
Coulombic potential on the charge-transfer-state survival prob-
abilities for the same set of electron-transfer parameters. For
an attractive potential (curve 3), the diffusive motion of the ions
is weighted toward approaching the donor, and the probability
of back transfer is greatly increased. A repulsive potential, on
the other hand (curve 1), can lead to significant ion survival
probability, as the acceptor ion is driven preferentially toward
the opposite pole from the donor. How far the acceptor ion is
driven depends on the micelle radius and Onsager length. For
small micelles with low dielectric constants, the acceptor might
be driven to the opposite pole from the donor and “trapped”
there for some significant fraction of time, since stepping in
any direction would then result in an unfavorable increase in
Coulombic potential. To study these effects, we used the Monte
Carlo simulation to calculatep(θ,t), the probability that an
acceptor ion exists atθ at timet. p(θ,t) is not an experimental
observable. The ion distribution,p(θ,t), can also be calculated
theoretically24,40but requires knowledge of the Green’s function
for the two-particle back-transfer problem,i.e., the probability
that an acceptor atθ0 at time 0 would exist as an ion atθ at
time t. This Green’s function obeys a differential equation
analogous to eq 8 but, because it involves an additional spatial
variable, requires a substantial increase in computational time.
In the calculation of the experimental observables,〈Pex(t)〉 and
〈Pct(t)〉, eqs 7 and 13 afford a great reduction in computational
time compared to the Monte Carlo method.
Figure 6 shows the ion distributions as a function of time for

Onsager lengths of 0 (no potentials6A), 112 Å (repulsive
potentials6B), and-112 Å (attractions6C). The electron-
transfer parameters are given in the caption, andp(θ,t) curves
are shown for times of 1, 2, 6, 10, and 15 ns. The total
probability of finding an ion at some timet is given by the area
under thep(θ,t) curve for that time. For both the attractive

Figure 4. Excited-state (〈Pex(t)〉) and charge-transfer (〈Pct(t)〉) survival
probabilities for diffusion constants of 0, 10, 20, and 30 Å2/ns for curves
1-4, respectively. Insets show short-time behavior for times less than
200 ps. The curves are from the theory (eqs 7 and 13) and do not
include donor fluorescence lifetime. The electron-transfer parameters
for all curves areJf ) 100 cm-1, âf ) 1.0 Å-1, ∆Gf ) -1.0 eV,Jb )
100 cm-1, âb ) 1.0 Å-1, and∆Gb ) -1.5 eV. The micelle radius,
number of acceptors, and optical and static dielectric constants wereR
) 20 Å,N) 9, εop ) 2.0, andεs ) 10.0, and the donor-acceptor contact
distance was 8 Å. No Coulombic potential was included in the back-
transfer calculations.

Figure 5. Theoretical charge-transfer survival curves calculated from
eq 13 for the same electron-transfer parameters as in Figure 4 but with
different Onsager lengths and a diffusion constant of 10 Å2/ns. Curve
1 is for a repulsive potential (rc ) 60 Å), while curves 2 and 3 are for
no potential (rc ) 0 Å) and for an attractive potential (rc ) -60 Å),
respectively. As can be seen from this figure, the probability of the
charge-transfer products surviving is substantially increased by a
repulsive Coulombic potential.
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potential and the zero potential case, the area under the curves
decreases with time as the ion population is depleted by back
transfer. In contrast, as Figure 6B shows, a repulsive Coulombic
potential results in a large fraction of the charge-transfer ions
surviving. The key point to note from the figure, though, is
that the peak of the ion distribution changes in a manner
consistent with the Coulombic potential. Because the forward
transfer is weighted heavily toward short distances, electron
transfer occurs preferentially to acceptors near the donor. For
an attractive potential, the ions are formed near contact and then
are pulled into the donor, where they disappear by back transfer.
The inset to Figure 6C shows the short-distance behavior of
the ions under the influence of an attractive potential. For all
times shown, the distribution is peaked at contact. This occurs
because of the fast diffusion constant and steep distance
dependence ofkf(r). Although forward transfer may occur to
acceptors several angstroms out from contact, the ions formed
spend on average very little of their lifetime at these larger
distances. The static dielectric constant of 5.0 provides little
shielding of the Coulombic potential, and the strong Coulomb
force pulls the bulk of the ions in immediately to the contact
distance, where they remain until back transfer occurs. Note
that for the chosen diffusion constant,D ) 20 Å2/ns, an acceptor

formed even 5 Å from contact will diffuse in toward the donor
in a time approximately equal to 52/4D ) 300 ps. For forward-
transfer rates that peak far out from contact or for systems where
the diffusion constant is slower, the ion distribution is observed
to move in toward the contact distance over time.
Parts A and B of Figure 6 contrast sharply with part C. In

the absence of a Coulombic potential, some of the ions formed
near the donor will escape by diffusing across the micelle
surface. When the potential is repulsive, the escape probability
is greatly enhanced so that the ions become clustered toward
the south pole of the micelle by 15 ns. (Note that in Figure
6B, the distribution does not actually peak atθ ) π, since the
(sin θ)/2 distribution weights the probability towardθ values
near the equator.) An ion located at the south pole experiences
the minimum potential energy, and any approach to the donor
is energetically unfavorable. Thus, for a repulsive potential,
long-term escape of the acceptor ion may be possible, and
advantageously designed systems could make use of the
relatively long ion survival time by reaction with a reagent that
is contained in the bulk solvent.

VI. Concluding Remarks

We have presented a theoretical analysis of photoinduced
electron transfer with geminate recombination for molecules
diffusing on the surface of a micelle. Comparison of the
theoretical predictions with Monte Carlo simulations shows
perfect agreement, confirming the accuracy of the theory. We
have discussed the role of the Coulombic potential and shown
the dramatic effect that diffusion has on both the excited-state
and charge-transfer-state survival probabilities. This is the first
time that forward electron transfer with geminate recombination
has been treated for molecules diffusing in a restricted geometry,
finite volume system. While these results are for the spherical
micelle problem, the method used to obtain them is general and
can be applied to any restricted geometry system.
The model system described in section II incorporates several

simplifying assumptions. In spite of these assumptions, the
theory presented here is valid for a variety of real experimental
conditions, provided the donor and micelle concentrations are
low. Higher concentrations could result in additional transfer
pathways that would need to be incorporated into differential
equations (1) and (8) above. The general methods presented
here, however, would still apply. Other considerations in
applying this theory to real experimental data come from the
effects of finite size. Although we have accounted for donor-
acceptor excluded volume by limiting the distance of closest
approach between the donor and acceptors, we have not included
acceptor-acceptor interactions or interactions due to the non-
zero size of the micelle surfactant molecules themselves. Also,
in calculating the Coulombic potential, we have used an Onsager
length determined by a single micelle dielectric constant. The
actual potential, however, would have vector components both
through the micelle and along the surface, and the dielectric
constants could be different in the two directions.
Recently, the roles of solvent structure and hydrodynamic

effects have been investigated in the theory for electron transfer
in isotropic liquid systems.56 This treatment could be extended
to the restricted geometry problem by including a distance-
dependent form of the diffusion constant and incorporating a
pair distribution function in the spatial averaging. Such a pair
distribution function would account for the potential,e.g., hard-
sphere or Lennard-Jones model, experienced by the donor,
acceptors, and micelle surfactant molecules. However, although
pair distribution functions in isotropic liquid systems are known,
to our knowledge, no similar function has been obtained for

Figure 6. Plots of the charge-transfer acceptor ion distribution for
several different times. A is for no Coulombic potential, while B and
C are for a repulsive and attractive potential (rc ) (112 Å),
respectively. Each panel shows the ion distribution at times of 1, 2, 6,
10, and 15 ns. (Timet ) 0 corresponds to photoexcitation of the donor
molecule.) The ion distribution results from the coupling between the
forward- and back-transfer dynamics, and the peak of the distribution
is heavily influenced by the Coulombic potential. The parameters are
Jf ) 50 cm-1, âf ) 1.0 Å-1, ∆Gf ) -1.0 eV,Jb ) 400 cm-1, âb ) 1.0
Å-1, ∆Gb ) -1.5 eV,D ) 20 Å2/ns,R) 20 Å,N ) 9, εop ) 2.0, and
εs ) 5.0. The donor-acceptor contact distance was taken to be 8.0 Å.
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particles on the surface of a sphere. In the absence of analytical
expressions, Monte Carlo simulations could possibly be used.
Although the model considered here has the simplifications

mentioned above, it should nonetheless be a reasonable first
approach to the description of real systems. It includes the most
essential features: the distance-dependent forward- and back-
electron-transfer rates, the diffusion of the molecules on the
micelle surface, the finite number of particles, and the Coulomb
interaction between the ions formed by forward electron transfer.
Thus, the theory presented here will be useful in the design
and analysis of electron-transfer experiments on micelle surfaces,
as well as the consideration of possible experiments in other
types of restricted geometry systems.
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