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Photoinduced Electron Transfer, Geminate Recombination, and Diffusion in Liquid 
Solution 
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A theory of photoinduced electron transfer with geminate recombination that includes the effects of spatial diffusion of the 
donor and the acceptor molecules in liquid solution is developed. The theory is an extension of the recent exact treatment 
of this problem in solid solution in which the particle positions are fixed. Example calculations are presented that illustrate 
the electron-transfer dynamics. The method is valid for any diffusion constant and any set of electron-transfer parameters. 

Introduction 
Photoinduced electron transfer from a donor to an acceptor in 

an ensemble of randomly distributed donors and acceptors gen- 
erates a radical cation and a radical anion that are in close 
proximity. The ions are highly reactive and can go on to do useful 
chemistry. However, since the thermodynamically stable state 
of the pair is the neutral parent molecules, there is a strong 
tendency for electron back transfer to occur prior to ion separation 
by diffusion. The lifetime of photogenerated ions in solution 
depends on the forward and back electron-transfer parameters,’ 
the concentration of donors and acceptors, and the diffusion2” 
characteristics of the donor and acceptor (viscosity of the solvent). 
In this paper, we extend the theory of photoinduced electron 
transfer and back transfer in solid  solution^^^^ to include diffusion 
of the particles. This extends the theory to liquids and provides 
a comprehensive description of the competition between electron 
back transfer and separation by diffusion. 

The effect of diffusion on particle motion has been known for 
many years.”’ More recently, a considerable amount of work 
has been done on the influence of translational and rotational 
diffusion on excitation transport among molecules in liquids.12-20 
In these treatments, the assumption of a slow or fast diffusion 
process relative to the transfer time is assumed to make the 
mathematics more tractible. The influence of diffusion on electron 
transfer has also been studied both experimentally*’ and theo- 
r e t i ~ a l l y . ~ ~ - ~ ~  In these studies various assumptions have limited 
their applicability. In one study, the low concentration limit of 
acceptors was used to obtain information only on forward electron 
transfer.22 In other studies, transfer is allowed only at contact 
between the donor and a ~ c e p t o r . * ~ , ~ ~  Steady-state and time-re- 
solved fluorescence was used to measure the effect of diffusion 
on forward electron transfer between rhodamine B and ferro- 
cyanide.21 

In this work, we treat the problem for any diffusion constant, 
any acceptor concentration, and any combination of forward and 
back electron transfer parameters. In this initial report, we have 
not included excluded volume effects or the Coulombic attraction 
of the ions. These can be treated and will be analyzed in a 
subsequent publication.26 The ensemble average donor excit- 
ed-state population function ( P e x ( t ) )  and donor cation population 
function ( P , , ( t ) )  are derived. We also calculate the transient 
grating observable, which is a measure of ground-state recovery. 

Electron Transfer and Back Transfer in Solution 
We start by determining the probabilities of finding the donor 

molecule in its excited state or cation state for a system containing 
only two molecules, the donor D and the acceptor A in solution. 
These results are extended to a system that has many acceptors, 
and the ensemble average is performed over all acceptor positions. 
For forward transfer our approach leads to results similar to those 
obtained for excitation transport.l**I9 The back transfer, however, 
is included in the theory considering forward and back electron 
transfer rates occurring over all distances (not just at contact) 
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and valid at all concentrations and diffusion constants. 
The donor has only one accessible electronic excited state, and 

the acceptor has one acceptor state. The concentration of donor 
molecules is low enough that excitation migration among the donor 
molecules does not occur. The electron back transfer from anion 
to cation is geminate. The electron-transfer rates are exponentially 
decaying functions of the donor-acceptor separation. 

System with One Donor and One Acceptor Molecule in So- 
lution. At t = 0, the donor is optically excited. In the absence 
of the acceptor, the probability of finding the donor still excited 
decays exponentially with the excited-state life time, 7, where 
( P e x ( t ) )  = exp(-t/.). When acceptors are present, the probability 
decreases more rapidly due to the addition of the electron-transfer 
pathways to the neutral acceptors. 

The three processes, excited-state decay, forward electron 
transfer, and electron back transfer, are characterized by their 
respective rates:],’ 

K =  1 / 7  ( l a )  

(1b) K f ( 4  = (1/7) exp((R0 - r ) / a r )  

where r is the donor-acceptor separation. In solid solution, r is 
a constant. However, in liquid solution r varies as a function of 
time. Ro and Rb are used to parametrize the distance scales of 
the forward and back transfer. af and ab characterize the falloff 
of the electronic wave function overlap of the neutral donor and 
acceptor states and ionic states, r e ~ p e c t i v e l y . ~ ~ ~  
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The donor and acceptor molecules undergo Brownian motion 
characterized by their corresponding diffusion constants D, and 
DAG I t  is convenient to describe the position of the acceptor 
molecule in a reference frame whose origin coincides at any given 
instant of time with the center of mass of the donor. In this 
reference frame the acceptor molecule undergoes Brownian motion 
relative to the donor characterized by the diffusion coefficient D 
= DD + D,.6,i6 We define the function Pex(r,t:r"). It is the 
probability of finding the donor molecule still in its excited state 
at time t with the acceptor on a spherical shell of radius r (about 
the donor) when the acceptor is initially located at a distance ro 
(from the donor). This does not include donor decay to the ground 
state (fluorescence lifetime). Similarly, we also define Pcl(r,t;po) 
so that it is the probability of finding an ion pair with separation 
r at time I when initially the ions are separated by po, The 
functions Pex(r,r;ro) and Pct(r,t;po) change their values due to 
molecular motion and electron transfer and satisfy the following 
diffusion equations: 

aPex(r,t;ro) /a t  = DV2P,,(r,t;r") - KF(r) P,,(r,t;r") (2) 

DV2Pc,(r,t;po) - Kdr)  Pct(r,t;po) + Kdr) exp(-t/T)Pe,(r,t;rO) 
(3) 

aPc,(r,t;po)/at = 

where O2 for the the spherically symmetric case considered here 
is 

v 2 = - - + -  2 a a2 

r ar &-2 

These equations are Fick diffusion equations with a sink term that 
accounts for the electron transfer. In eq 2 only decay because 
of electron transfer has been included. Decay from the excited- 
state lifetime of the donor is independent of the electron transfer 
and diffusion and is incorporated in the final results by multiplying 
by exp(-t/T). 

An absorption boundary condition is used. Because excluded 
volume is not included in this treatment, the forward and back 
transfer rates are infinite a t  r = 0. As will be shown in detail 
elsewhere,26 this boundary condition, for point particles, gives the 
same results as a reflecting boundary condition for point particles. 
This is because the volume element at the origin is zero ( 4 7 d  dr 
= 0 for r = 0). With the inclusion of excluded volume the 
reflecting boundary condition is used26 because contact absorption 
with finite particles can artificially reduce the population. 
Equations 2 and 3 are solved numerically. 

System of One Donor and Many Surrounding Acceptors. In  
a system of a single donor and many acceptors with each acceptor 
position r,(t)  (i = 1, 2, ..., N) time dependent, the problem becomes 
more complex. The motions of the molecules in the solvent are 
taken to be uncorrelated, i.e., the diffusion coefficients are in- 
dependent of their concentration. For the forward transfer, the 
donors and acceptors are neutrals and exert no long-range forces 
on each other. It is possible that at very high concentrations they 
may tend to aggregate. Here we treat the case of no aggregate 
formation. The probability of finding the donor molecule still in 
its excited state at time t (without lifetime decay) can be written 
as the product of the single particle results found in the previous 
subsection: 

Pex(rI, ..., rN,t;<, ..., 4) = fi Pex(rl,t;e) (4) 
I =  I 

where Pex(rl,t;ry) is the solution of eq 2. 
In the forward-transfer process the donor molecule can transfer 

an electron to any acceptor with the transfer rate determined by 
the D-A separation. The back transfer is different. The anion 
will transfer the electron back to the cation (original donor 
molecule). Transfer from the anion to a neutral acceptor is not 
included since there is no net driving force for the transfer, and 
barriers for electron tunneling are generally large.27 Transfer 
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from an anion to a cation that was not the original source of the 
electron is not included because the concentration of donors is 
low and the concentration of donor cations is even lower. 
Therefore the back-transfer process involves only two particles. 
Coulombic attraction of the cation and anion will be treated 
subsequently.26 Here their motions are taken to be diffusive. The 
dependence of the cation probability on the distribution of the 
other acceptors is contained in the details of the forward transfer. 
Equation 3 can be generalized to the case of many acceptors as 
follows: 

aPit(r,,  ..., rN,t;pR)/& = DV;EI(rl, ..., rN&, ..., &) - 
Kb(ri) f'it(ri, -.., rN,t;Pl), ..., p i )  + 

Kf(ri)  exp(-t/T)Pex(ri, ..., rN,t:$. ..., f ? )  (5) 

where the function P;,(r,, ..., rN,t;py, ,.., p i )  is the probability of 
finding a donor molecule being a cation with the ith acceptor at 
location ri a t  time t being n anion. At t = 0, we have the initial 
condition c t ( r l ,  ..., rN,O;py, ..., p i )  = 0. 

Ensemble Averages. The donor excited-state and cation-state 
probability functions obtained in the previous subsection depend 
on the configuration of acceptors. Observables can be obtained 
by averaging over all possible configurations and then taking the 
thermodynamic limit. For the excited-state population the av- 
eraging procedure is described in refs 12-16. The results is 

(Pex(r)) = exp(-t/T) exp(-4aCl:[l - Pex(r,t)lr2 dr) (6) 

Since excluded volume in not included in this treatment, r, = 0. 
Pex(r,t) is the solution to the following differential equation (eq 
2 averaged over ro): 

dPe,(r,t)/dt = DV2Pex(rJ) - Kdr) Pex(r,t) ( 7 )  

For the cation probability we have the following equation, which 
is the average over the final coordinate (the ith acceptor that has 
received the electron): 

( P c t ( i ) )  = 4 n C ~ L ( P , , ( r . t ) ) ~ ~ - , , ~ ~ r ~  r m  dr  (8) 

where ( ) P , ~ - ~ , ~ O  is an average over the initial positions (r")  of the 
acceptors, the N - 1 positions (ith acceptor excluded) at time t ,  
and the initial position ( P O )  of the anion. The averaging procedure 
used above is described in ref 7 .  The novel averaging procedure 
that was developed provided an exact solution to the problem in 
the absence of diffusion (solid solution). Here it provides a method 
that makes an accurate treatment of this problem tractible. 
(P~,(r , r ) )+,N-l ,p~ is the solution to the following equation: 

a ( P:,( r,t) ) P ,~ -  I at = DO2 ( p'ct(r,t) ) P . ~ - ~  - 

Kdr)  (~L(r,t))IO,N-l,pO + Kdr) exp(- t / r )P, , ( r , t ) (Pex(t ) )  (9) 

The differential equations were solved by using the Crank-Ni- 
cholson6 method, and the integrals were solved by using Gaussian 
quadrature.2B In both cases, great care was exercised to ensure 
the accuracy of the numerical procedures. It was necessary to 
choose small enough distance and time steps to get stable and 
accurate solutions to the partial differential equations. The choice 
depends on the parameters used in the calculations. Distance steps 
as small as 0.1 A and time steps as small as 0.0001 ns were used. 
All computations were performed on a DEC station 3100, and 
the code was written in the C language. 

Results and Discussion 
Figure 1 shows the solution to eq 6. It is the probability the 

donor is in  its excited state for various diffusion constants. The 
parameters are given in the figure caption. They are one set of 
parameters used in the calculations in solid solutions reported 
previously.' A more detailed account of this work will be presented 
with a survey of parameters.26 As can be seen, increasing the 
diffusion constant from 0 to 100 X cmz/s makes the excit- 
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Figure 1.  Excited-state pulation. 'I he electron-transfer parameters 
used are a, = ab = 1 .O R and Ro = Rb = 10.0 A. The fluorescence 
lifetime T = 16 ns. The concentration of acceptors C = 0.1 M. As can 
be seen, increasing the diffusion constant makes the excitated-state 
population decay faster. 
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Figure 3. Ensembled averaged ion probability as a function of time. The 
parameters are the same as those used in Figure I .  Increasing the 
diffusion constant increases the number of ions found at long time. 
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Figure 2. Probability that the ith acceptor is an anion as a function of 
distance at r = 1 ns for different diffusion constants. The parameters 
are the same as those used in Figure 1. As the diffusion constant in- 
creases, the peak of the ion probability decreases and the width increases. 

ed-state population decay faster. Diffusion allows acceptors to 
move toward and away from the excited donor. Since the rate 
of transfer decreases exponentially with distance, acceptors moving 
toward the donor cause an increase in the transfer rate that is 
greater than the decrease created by acceptors moving away from 
the donor. 

Figure 2 shows the probability that the donor is a cation with 
the ith acceptor an anion as a function of the ion pair separation 
(eq 9). The plot is for t = 1 ns. The curves show the distribution 
of ion-pair separations for various diffusion constants. Curve A 
is for D = 0. There are no pairs with separations 14 A. A pair 
with separation of 3 A will have been created at early time and 
by 1 ns will have recombined. There are also no ion pairs with 
separations 1 1 4  A. Given the forward-transfer rate, none have 
been created. As D increases from 0, the curves spread to both 
large and small distances. Ion pairs created with separations of 
I 1  4 A can diffuse out before recombining. Ion pairs can also 
diffuse in. When the diffusion constant is large, D = 100 X 
cm2/s, the distribution has broadened considerably in both di- 
rections as compared to the case of D = 0 (solid solution). (Note 
that the values as a function of separation are not multiplied by 
4 r r 2  dr. See ref 7 for a detailed discussion of this type of plot.) 

Figure 3 shows the total cation probability as a function of time 
and diffusion constant. Because of the exponential decrease in 
the transfer rate with distance, ion pairs tend to be formed with 
small separations. For D = 0 only electron-transfer events to 
relatively distant acceptors produce ions that are long lived. As 
D increases, there is an increasing probability of the cation and 
anion moving apart, which increases the ion lifetime and the 
probability of ions existing. The details of the curves in Figures 
1-3 depend on the choices of the forward and back parameters. 
For example, if  the forward transfer is very short ranged and the 
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Figure 4. Transient grating observable. The parameters are the same 
as those used in Figure 1. Increasing the diffusion constant makes the 
observable decay faster at early time and leaves an offset at long time. 

back transfer has a substantially longer range, D will have to 
become much larger before there is a substantial change from the 
D = 0 case. 

Figure 4 shows calculations of the transient grating experimental 
~ b s e r v a b l e . ~ ~ ~ ~ ~ ~  This is a ground-state recovery experiment that 
is proportional to the squares of the sum of the excited state (eq 
6) and cation state (eq 8)  pop~lations.~ It is essentially the square 
of the result that would be obtained in a pumpprobe experiment. 
With time-resolved fluorescence measurements, the time depen- 
dence of the excited-state population (forward electron transfer) 
can be determined. Combining the fluorescence results with 
transient grating measurements gives the back-transfer dynamics. 
This has been done for solid solutions (D = O).* As D increases, 
the decay becomes faster and a constant signal develops at long 
time. The size of the constant signal is a measure of the ions that 
are long lived because they have escaped geminate recombination 
through diffusion. 

The formal theory will always cause an eventual decay to zero 
signal, Le., total geminate recombination, because given an infinite 
time and no other quenchers, geminate recombination will always 
occur. In a detailed account of this workz6 we calculate a 
well-defined quantity, C1%, which is the concentration of a fic- 
ticious ion quencher that quenches 1% of the ions by a hypothetical 
collision controlled chemical reaction. C1% permits a quantitative 
discussion of the competition between geminate recombination 
and escape by diffusion. 
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